Abstract:Insulated gate bipolar transistor (IGBT) is one of the core components in the power electronics system, which realizes the energy conversion and management. However, industrial survey shows that the reliability of IGBT modules in high-reliability applications is not high, and the thermal fatigue failure of IGBT modules will lead to the unplanned downtime of the entire system. Lifetime evaluation of IGBT modules will help guide the scheduled maintenance of power electronic equipment and reduce economic costs. Relevant studies indicate that the failure of IGBT modules is closely related to temperature. Thus, this paper reviewed the lifetime evaluation of IGBT modules from the perspective of thermal characteristics. Following five aspects were introduced: failure mechanism of thermal fatigue, establishment and application of thermal network, thermal parameter identification and monitoring, junction temperature estimation, and analytical and physical models for lifetime predication. Finally, the challenges of existing research were summarized, and the lifetime evaluation of IGBT modules was prospected.
[1] Iwamuro N, Laska T.IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752. [2] 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161. Qian Zhaoming, Zhang Junming, Sheng Kuang.Status and development of power semiconductor devices and its applications[J]. Proceedings of the CSEE, 2014, 34(29): 5149-5161. [3] 周雒维, 吴军科, 杜雄, 等. 功率变流器的可靠性研究现状及展望[J]. 电源学报, 2013, 11(1): 1-15. Zhou Luowei, Wu Junke, Du Xiong, et al.Research status and prospect of power converter reliability[J]. Journal of Power Supply, 2013, 11(1): 1-15. [4] 刘国友, 黄建伟, 覃荣震, 等. 高压大电流(4500V/ 600A)IGBT芯片研制[J]. 电工技术学报, 2021, 36(4): 810-819. Liu Guoyou, Huang Jianwei, Qin Rongzhen, et al.Development of large size IGBT chip with high power capacity of 4500V/600A[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 810-819. [5] Falck J, Felgemacher C, Rojko A, et al.Reliability of power electronic systems: an industry perspective[J]. IEEE Industrial Electronics Magazine, 2018, 12(2): 24-35. [6] Fischer K, Pelka K, Bartschat A, et al.Reliability of power converters in wind turbines: exploratory analysis of failure and operating data from a worldwide turbine fleet[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6332-6344. [7] Yang Shaoyong, Bryant A T, Mawby P A, et al.An industry-based survey of reliability in power elec- tronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451. [8] Ciappa M.Selected failure mechanisms of modern power modules[J]. Microelectronic Reliability, 2002, 42: 653-667. [9] Choi U M, Blabjerg F.Separation of wear-out failure modes of IGBT modules in grid-connected inverter systems[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 6217-6223. [10] Ghimire P.Real time monitoring and wear out of power modules[D]. Demark: Aalborg University, 2015. [11] 刘国友, 罗海辉, 张鸿鑫, 等. 基于全铜工艺的750A/6500V高性能IGBT模块[J]. 电工技术学报, 2020, 35(21): 4501-4510. Liu Guoyou, Luo Haihui, Zhang Hongxin, et al.High performance 750A/6500V IGBT module based on full-copper processes[J]. Transactions of China Electro- technical Society, 2020, 35(21): 4501-4510. [12] Choi U M, Blabjerg F, Lee K B.Study and handling methods of power IGBT module failures in power electronic converter systems[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2517-2533. [13] Lutz J, Schlangenotto H, Scheuermann U, et al.Semiconductor power devices: physics, characteri- stics, reliability[M]. Switzerland: Spinger International Publishing, 2018. [14] 周生奇. 功率变流装置中IGBT器件缺陷辨识研究[D]. 重庆: 重庆大学, 2012. [15] 赵渊, 谢开贵. 电网可靠性指标概率密度分布的解析计算模型[J]. 中国电机工程学报, 2011, 31(4): 31-38. Zhao Yuan, Xie Kaigui.An analytical approach to compute the probability density distributions of reliability indices for bulk power systems[J]. Pro- ceedings of the CSEE, 2011, 31(4): 31-38. [16] Ma Ke, Choi U M, Blaabjerg F.Prediction and validation of wear-out reliability metrics for power semiconductor devices with mission profiles in motor drive application[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9843-9853. [17] Wang Huai, Liserre M, Blaabjerg F, et al.Transi- tioning to physics-of-failure as a reliability driver in power electronics[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(1): 97-114. [18] 张军, 杜雄, 孙鹏菊, 等. 气温波动对风电变流器中功率器件寿命消耗的影响[J]. 电源学报, 2016, 14(6): 80-86. Zhang Jun, Du Xiong, Sun Pengju, et al.The effect of ambient temperature fluctuation on the consumed lifetime of power devices in the wind turbine power converter system[J]. Journal of Power Supply, 2016, 14(6): 80-86. [19] Wang Huai, Liserre M, Blaabjerg F.Toward reliable power electronics: challenges, design tools, and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 17-26. [20] Held M, Jacob P, Nicoletti G, et al.Fast power cycling test for IGBT modules in traction application[C]//Proceedings of Second International Conference on Power Electronics and Drive Systems, Singapore, 1997: 425-430. [21] Peck D S.The analysis of data from accelerated tests[C]//9th Reliability Physics Symposium, Las Vegas, USA, 1971: 69-77. [22] Albarbar A, Batunlu C.Thermal analysis of power electronic devices used in renewable energy systems[M]. Switzerland: Spinger International Publishing, 2018. [23] Zhang Jun, Du Xiong, Xiao Wenshan, et al.Condition monitoring the health status of forced air cooling system using the natural frequency of thermal network[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10408-10413. [24] 英飞凌. IGBT模块的损耗、温度和安全运行[EB/OL]. https://www.docin.com/p-248178593.html. [25] Amir E M, Mark J C.In-service diagnostics for wire-bond lift-off and solder fatigue of power semi- conductor packages[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 7187-7198. [26] Zeng Guang, Herold C, Lutz J, et al.Experimental investigation of linear cumulative damage theory with power cycling test[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4722-4728. [27] Oukaour A, Tala-ighil B, Pouderoux B, et al. Ageing defect detection on IGBT power modules by artificial training methods based on pattern recognition[J]. Microelectronics Reliability, 2011, 51(2): 386-391. [28] Yun C S, Malberti P, Ciappa M, et al.Thermal component model for electrothermal analysis of IGBT module systems[J]. IEEE Transactions on Advanced Packaging, 2011, 24(3): 401-406. [29] Gopireddy L R, Tolbert L M, Ozpineci B, et al.Power cycle testing of power switches: a literature survey[J]. IEEE Transactions on Power Electronics, 2014, 30(5): 2465-2473. [30] Herr E, Frey T, Schlegel R, et al.Substrate-to-base solder joint reliability in high power IGBT modules[J]. Microelectronics Reliability, 1997, 37(10-11): 1719-1722. [31] 刘洪纪. IGBT快速功率循环老化试验装置的研究与设计[D]. 重庆: 重庆大学, 2015. [32] Durand C, Klingler M, Coutellier D, et al.Power cycling reliability of power modules: a survey[J]. IEEE Transactions on Device & Materials Reliability, 2016, 16(1): 80-97. [33] Gao Bing, Yang Fan, Chen Mingyou, et al.A tem- perature gradient-based potential defects identification method for IGBT module[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2227-2242. [34] 贾英杰, 罗毅飞, 肖飞, 等.一种符合欧姆定律的IGBT等效电阻模型[J]. 电工技术学报, 2020, 35(2): 310-317. Jia Yingjie, Luo Yifei, Xiao Fei, et al.An equivalent electrical resistance model of IGBT suitable for Ohm's law[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 310-317. [35] Bouarroudj M, Khatir Z, Ousten J P, et al.Temperature-level effect on solder lifetime during thermal cycling of power modules[J]. IEEE Transa- ctions on Device & Materials Reliability, 2008, 8(3): 471-477. [36] Oezkol E, Hartmann S.Load-cycling capability of HiPak IGBT modules[R]. ABB Application Note 5SYA2043-02, 2012. [37] Bayerer R, Herrmann T, Licht T, et al.Model for power cycling lifetime of IGBT modules various factors influencing lifetime[C]//5th International Conference on Integrated Power Systems, Nuremberg, Germany, 2008: 1-6. [38] Choi U M, Blaabjerg F, Jørgensen S.Study on effect of junction temperature swing duration on lifetime of transfer molded power IGBT modules[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6234-6443. [39] Choi U M, Blaabjerg F, Jørgensen S.Impact of cooling system capacity on lifetime of power module in adjustable speed drives[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 1768-1776. [40] 陈民铀, 高兵, 杨帆, 等. 基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J]. 电工技术学报, 2015, 30(20): 252-260. Chen Minyou, Gao Bing, Yang Fan, et al.Healthy evaluation on IGBT solder based on electro-thermal- mechanical analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 252-260. [41] Pedersen K B, Pedersen K.Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 975-986. [42] Kadambi V, Abuaf N.An analysis of the thermal response of power chip packages[J]. IEEE Transa- ctions on Electron Devices, 1985, 32(6): 1024-1033. [43] Bagnoli P E, Casarosa C E, Dallago E, et al.Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization-part I: fundamentals and theory[J]. IEEE Transactions on Power Electronics, 1998, 13(6): 1208-1219. [44] 熊诗成, 鲁军勇, 郑宇锋, 等. 基于各层材料传热特性的晶闸管结温计算等效电路模型[J]. 中国电机工程学报, 2018, 38(4): 1157-1164. Xiong Shicheng, Lu Junyong, Zheng Yufeng, et al.Equivalent circuit model based on the heat transfer characteristics of each layer for pulsed power thyristor junction temperature calculation[J]. Pro- ceedings of the CSEE, 2018, 38(4): 1157-1164. [45] Ye Jin, Yang Kai, Ye Haizhong, et al.A fast electro- thermal model of traction inverters for electrified vehicles[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3920-3934. [46] Li Hui, Liao Xinglin, Zeng Zheng, et al.Thermal coupling analysis in a multichip paralleled IGBT module for a DFIG wind turbine power converter[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 80-90. [47] Ouhab M, Khatir Z, Ibrahim A, et al.New analytical model for real-time junction temperature estimation of multichip power module used in a motor drive[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5292-5301. [48] Wang Zhongxu, Wang Huai, Zhang Yi, et al. A multi-port thermal coupling model for multi-chip power modules suitable for circuit simulators[J]. Microelectronics Reliability, 2018, 88-90: 519-523. [49] 李辉, 刘盛权, 李洋, 等. 考虑多热源耦合的风电变流器IGBT模块结温评估模型[J]. 电力自动化设备, 2016, 36(2): 51-56. Li Hui, Liu Shengquan, Li Yang, et al.Junction temperature evaluation model for IGBT module of wind-power converter considering multi-thermal coupling[J]. Electric Power Automation Equipment, 2016, 36(2): 51-56. [50] Lu Hongli, Lu Yijun, Zhu Lihong, et al.Efficient measurement of thermal coupling effects on multichip light-emitting diodes[J]. IEEE Transactions on Power Electronics, 2012, 32(12): 9280-9292. [51] Li Jianfeng, Castellazzi A, Eleffendi M A, et al.A physical RC network model for electrothermal analysis of a multichip SiC power module[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2494-2508. [52] Bouguezzi S, Ayadi M, Gharianim M.Developing a simplified analytical thermal model of multi-chip power module[J]. Microelectronics Reliability, 2016, 66(1): 64-77. [53] 马铭遥, 郭伟生, 严雪松, 等. 用于电动汽车功率模块热分析的紧凑型热网络模型[J]. 中国电机工程学报, 2020, 40(18): 5796-5805. Ma Mingyao, Guo Weisheng, Yan Xuesong, et al.Compact thermal network model for thermal analysis of power modules in electric vehicle[J]. Proceedings of the CSEE, 2020, 40(18): 5796-5805. [54] Christophe B, Nicolas G, Joe A.Lumped dynamic electrothermal model of IGBT module of inverters[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(3): 355-364. [55] Gachovska T K, Tian B, Hudgin J L, et al.A real-time thermal model for monitoring of power semi- conductor devices[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 3361-3367. [56] 刘宾礼, 罗毅飞, 肖飞, 等. 基于传热动力学作用特征的IGBT结温预测数学模型[J]. 电工技术学报, 2017, 32(12): 79-87. Liu Binli, Luo Yifei, Xiao Fei, et al.Junction temperature prediction mathematical model of IGBT based on the characteristics of thermal dynamics[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 79-87. [57] Shammsa N Y A, Rodriguez M P, Masana F. A simple method for evaluating the transient thermal response of semiconductor devices[J]. Microelectronics Reliabi- lity, 2002, 42(1): 109-117. [58] Wang Ze, Qiao Wei.A physics-based improved cauer-type thermal equivalent circuit for IGBT modules[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 6781-6786. [59] Wu Rui, Wang Huai, Ma Ke, et al.A temperature- dependent thermal model of IGBT modules suitable for circuit-level simulations[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 3306-3314. [60] Gerstenmaier Y C, Wachutka G K M. Efficient calculation of transient temperature fields responding to fast changing heat-sources over long duration in power electronic systems[J]. IEEE Transactions on Components and Packaging Technologies, 2004, 27(1): 104-111. [61] Gerstenmaier Y C, Castellazzi A, Wachutka G K M. Electrothermal simulation of multichip-modules with novel transient thermal model and time-dependent boundary conditions[J]. IEEE Transactions on Power Electronics, 2006, 21(1): 45-55. [62] Bahman A S, Ma Ke, Ghimire P, et al.A 3D lumped thermal network model for long-term load profiles analysis in high power IGBT modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 1050-1063. [63] IECStandard 60747-9 Semiconductor devices-discrete devices-part 9: insulated-gate bipolar transistors (IGBTs)[S]. IEC, 2007. [64] JESD 51-14 Transient dual interface test method for the measurement of the thermal resistance junction- to-case of semiconductor devices with heat flow through a single path[S]. JEDEC, 2010. [65] Rencz M, Poppe A, Kollar E, et al.Increasing the accuracy of structure function based thermal material parameter measurements[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 51-57. [66] Szekely V.A new evaluation method of thermal transient measurement results[J]. Microelectronics Journal, 1997, 28(3): 277-292. [67] Szekely V.Identification of RC networks by decon- volution: chances and limits[J]. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, 1998, 45(3): 244-258. [68] Szekely V, Rencz M.Thermal dynamics and the time constant domain[J]. IEEE Transactions on Com- ponents and Packaging Technologies, 2000, 23(3): 587-594. [69] Smirnov V, Sergeev V, Gavrikov A, et al.Thermal impedance meter for power MOSFET and IGBT transistors[J]. IEEE Transactions on Power Electro- nics, 2018, 33(7): 6211-6216. [70] Wachutka G, Gerstenmaier Y C, Kiffe W, et al.Combination of thermal subsystems by use of rapid circuit transformation and extended two-port theory[J]. Microelectronics Journal, 2009, 40(1): 26-34. [71] Lei Ting, Barnes M, Smith S, et al.Using improved power electronics modeling and turbine control to improve wind turbine reliability[J]. IEEE Transa- ctions on Energy Conversion, 2015, 30(3): 1043-1051. [72] Hensler A, Christian H, Lutz J, et al.Thermal impedance monitoring during power cycling tests[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2011: 241-246. [73] Hensler A, Christian H, Lutz J, et al.Thermal impedance spectroscopy of power modules during power cycling[C]//23rd International Symposium on Power Semiconductor Devices and Ics, San Diego, CA, USA, 2011: 264-267. [74] Aliyu A M, Castellazzi A.Prognostic system for power modules in converter systems using structure function[J]. IEEE Transactions on Power Electronics, 2017, 33(1): 595-605. [75] Xiang Dawei, Ran Li, Tavner P, et al.Condition monitoring power module solder fatigue using inverter harmonic identification[J]. IEEE Transa- ctions on Power Electronics, 2011, 27(1): 235-247. [76] Xiang Dawei, Ran Li, Tavner P, et al.Monitoring solder fatigue in a power module using case-above- ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2578-2591. [77] Wang Ze, Tian Bo, Qiao Wei, et al.Real-time aging monitoring for IGBT modules using case temper- ature[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1168-1178. [78] Hu Zhen, Du Mingxing, Wei Kexin.Online calcu- lation of the increase in thermal resistance caused by solder fatigue for IGBT modules[J]. IEEE Transa- ctions on Device and Materials Reliability, 2017, 17(4): 785-794. [79] 杜雄, 李腾飞, 夏俊, 等. 基于零输入响应的Cauer型RC网络参数辨识方法[J]. 电工技术学报, 2017, 32(1): 222-230. Du Xiong, Li Tengfei, Xia Jun, et al.Idenficiation method for Cauer type RC network parameter based on the zero-input response[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 222-230. [80] Zhang Jun, Du Xiong, Yu Yaoyi, et al.Thermal parameter monitoring of IGBT module using junction temperature cooling curves[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8148-8160. [81] Zhang Jun, Du Xiong, Wu Yu, et al.Thermal parameter monitoring of IGBT module using case temperature[J]. IEEE Transactions on Power Electro- nics, 2019, 34(8): 7942-7956. [82] Du Xiong, Zhang Jun, Zheng Shuai, et al.Thermal network parameter estimation using cooling curve of IGBT module[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7957-7971. [83] Huang Hui, Bryant A T, Mawby P A.Electro-thermal modelling of three phase inverter[C]//Proceedings of the 14th European Conference on Power Electronics and Applications (EPE), Birmingham, 2011: 1-7. [84] Johannes V G, Claus J F, Harald K, et al.A fast inverter model for electro-thermal simulation[C]// Proceedings of the 27th IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, 2012: 1-8. [85] Zhou Z, Kanniche M S, Butcup S G, et al.High-speed electro-thermal simulation model of inverter power modules for hybrid vehicles[J]. IET Electric Power Applications, 2011, 5(8): 636-643. [86] Arendt W, Ulrich N, Werner T.Application manual power semiconductors[M]. Nuremberg: ISLE Verlag, 2011. [87] 杜雄, 李高显, 吴军科, 等. 一种用于风电变流器可靠性评估的结温数值计算方法[J]. 中国电机工程学报, 2015, 35(11): 2813-2821. Du Xiong, Li Gaoxian, Wu Junke, et al.A junction temperature numerical calculation method for reliability evaluation in wind power converters[J]. Proceedings of the CSEE, 2015, 35(11): 2813-2821. [88] 王希平, 李志刚, 姚芳. 模块化多电平换流阀IGBT器件功率损耗计算与结温探[J]. 电工技术学报, 2019, 34(8): 1636-1646. Wang Xiping, Li Zhigang, Yao Fang.Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1636-1646. [89] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250. Li Hui, Hu Yu, Wang Kun, et al.Thermal distribution and dynamic junction temperature calculation of IGBT power modules for wind turbine converters considering the influence of stray inductances[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4242-4250. [90] Zhang Yi, Wang Huai, Wang Zhongxu, et al.A simplification method for power device thermal modeling with quantitative error analysis[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 1649-1658. [91] 方鑫, 周雒维, 姚丹, 等. IGBT模块寿命预测模型综述[J]. 电源学报, 2014, 12(3): 14-21. Fang Xin, Zhou Luowei, Yao Dan, et al.An overview of IGBT life prediction models[J]. Journal of Power Supply, 2014, 12(3): 14-21. [92] Norris K C, Landzberg A H.Reliability of controlled collapse interconnections[J]. IBM Journal of Research and Development, 1969, 13(3): 266-271. [93] Lee W W, Nguyen L T, Selvaduray G S.Solder joint fatigue models: review and applicability to chip scale packages[J]. Microelectronics Reliability, 2000, 40(2): 231-244. [94] Hanif A, Yu Yuechuan, DeVoto D, et al. A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 4729-4746. [95] Kostandyan E E, Sørensen J D.Physics of failure as a basis for solder elements reliability assessment in wind turbines[J]. Reliability Engineering System Safety, 2012, 108: 100-107. [96] Sasaki K, Iwasa N, Kurosu T, et al.Thermal and structural simulation techniques for estimating fatigue life of an IGBT module[C]//20th International Symposium on Power Semiconductor Devices and IC's, Orlando, FL, USA, 2008: 181-184. [97] Celnikier Y, Benabou L, Dupont L, et al.Investi- gation of the heel crack mechanism in Al connections for power electronics modules[J]. Microelectronic Reliability, 2011, 51(5): 965-974. [98] Yang Xin, Lin Zhikai, Ding Jingfang, et al.Lifetime prediction of IGBT modules in suspension choppers of medium/low-speed maglev train using an energy- based approach[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 738-747.