Analysis of High Temperature Wide Band Dielectric Properties of Organic Silicone Elastomer for High Voltage SiC Device Packaging
Liu Dongming1, Li Xuebao1, Xu Jiayu1,2, Mao Yuan1, Zhao Zhibin1
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Department of Electrical and Computer Engineering Virginia Tech Blacksburg 24060 USA
Abstract:Because of their good insulation and high temperature resistance, organic silicone elastomers are widely used in SiC devices under high frequency, high pressure and high temperature working conditions. In a wide range of frequency and temperature, the dielectric properties of silicone elastomer materials have a great impact on the electric field distribution in SiC devices. Therefore, the dielectric properties of organic silicone elastomers with wide broadband (10-2~107Hz) range and wide temperature (20~280℃) range were obtained by frequency-domain dielectric spectrum analysis in this paper. The dielectric process of silicon elastomers at different frequencies and temperatures was revealed, the method of distinguishing low-frequency dispersion process from relaxation polarization process was improved, and an improved Cole-Cole model was introduced. Finally, the influence of temperature on the dielectric response process and dielectric characteristic parameters of organic silicone elastomers was obtained. The results show that with the increase of frequency, the real part of the complex dielectric constant decreases and tends to be stable, while the imaginary part of the complex dielectric constant decreases first and then rises to the peak value. Temperature and frequency have great influence on the dielectric properties of the organic silicone elastomer. Under the condition of high temperature and low frequency, the organic silicone elastomer material has obvious phenomena of low frequency dispersion and charge diffusion. The characteristic parameters of Cole-Cole model at different temperatures are extracted. The relationship of the DC conductivity σdc, the relaxation intensity Δε and the low frequency dispersion strength ξ with temperature satisfies the Arrhenius equation law. The high frequency dielectric constant ε∞ shows an approximate first-order function relationship with temperature and decreases with the increase of temperature; the relaxation time τ decreases with the increase of temperature at high temperature, and its mechanism can be revealed by the double well model. The characteristic parameters obtained in this paper provide data support for insulating design of SiC device package.
刘东明, 李学宝, 顼佳宇, 毛塬, 赵志斌. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559.
Liu Dongming, Li Xuebao, Xu Jiayu, Mao Yuan, Zhao Zhibin. Analysis of High Temperature Wide Band Dielectric Properties of Organic Silicone Elastomer for High Voltage SiC Device Packaging. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559.
[1] Fu Pengyu, Zhao Zhibin, Li Xuebao, et al.Partial discharge measurement and analysis in PPIs[J]. IET Power Electronics, 2018, 12(1): 138-146. [2] Fu Pengyu, Zhao Zhibin, Cui Xiang, et al.Partial discharge measurement and analysis in high voltage IGBT modules under DC voltage[J]. CSEE Journal of Power and Energy Systems, 2018, 4(4): 513-523. [3] Yao Yiying.Thermal stability of Al2O3/silicone composites as high-temperature encapsulants[D]. Blacksburg: Virginia Tech, 2014. [4] Chen Zheng, Yao Yiying, Zhang Wenli, et al.Deve- lopment of a 1200V 120A SiC MOSFET module for high-temperature and high frequency applications[C]// Wide Bandgap Power Device & Applications, Columbus, 2013: 52-59. [5] zuhide Ino K A, Mineo, Miura, et al. SiC power device evolution opening a new era in power electronics[C]//2019 IEEE International Conference on Electronic Device and Solid-State Circuits (EDSSC), Xi'an, 2019: 1-3. [6] Do M T, Auge J L, Lesaint O.Dielectric losses and breakdown in silicone gel[C]//Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference on Electrical Insulation & Dielectric Phenomena, Kansas, 2006: 541-544. [7] Locatelli M L, Khazaka R, Diaham S, et al.Evalu- ation of encapsulation materials for high-temperature power device packaging[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2281-2288. [8] Jonscher A K.Dielectric relaxation in solids[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 57-70. [9] Debye P J William. Polar molecules[M]. New York: Chemical Catalog Company, 1929. [10] Cole K S, Cole R H.Dispersion and absorption in dielectrics I. alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351. [11] Enis Tuncer, Stanislaw M G.Electrical properties of filled silicone rubber[J]. Journal of Physics Con- densed Matter, 2000, 12(8): 1873-1897. [12] Davidson D W, Cole R H.Dielectric relaxation in glycerol, propylene glycol, and n-propanol[J]. The Journal of Chemical Physics, 1951, 19(12): 1484-1490. [13] Havriliak S, Negami S.A complex plane analysis of α-dispersions in some polymer systems[J]. Journal of Polymer Science Part C: Polymer Symposia, 1966, 14(1): 99-117. [14] Dissado L A, Hill R M.Anomalous low-frequency dispersion, near direct current conductivity in dis- ordered low-dimensional materials[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1984, 80(3): 291-319. [15] Dissado L A, Hill R M.A cluster approach to the structure of imperfect materials and their relaxation spectroscopy[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1983, 390(1798): 131-180. [16] Hill R M.Characterisation of dielectric loss in solids and liquids[J]. Nature, 1978, 275(5676): 96-99. [17] 顼佳宇, 李学宝, 崔翔. 高压大功率IGBT器件封装用有机硅凝胶的制备及耐电特性研究[J]. 电工技术学报, 2021, 36(2): 352-361. Xu Jiayu, Li Xuebao, Cui Xiang.Research on preparation process and breakdown properties of silicone gel used for the encapsulation of IGBT power modules[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 352-361. [18] 张淑君. 气泡动力学特性的三维数值模拟研究[D]. 南京: 河海大学, 2006. [19] 王政平, 任维赫. 材料复介电常数测量方法研究进展[J]. 光学与光电技术, 2011, 9(1): 93-96. Wang Zhengping, Ren Weihe.Progress in the measurement of complex dielectric constants of materials[J]. Optics & Optoelectronic Technology, 2011, 9(1): 93-96. [20] Vu T A T, Augé J L, Lesaint O. Partial discharges and light emission from ceramic substrates embedded in liquids and gels[C]//2011 IEEE International Con- ference on Dielectric Liquids, Trondheim, 2011: 1-4. [21] 杨丽君, 高思航, 高竣, 等. 油纸绝缘频域介电谱的修正Cole-Cole模型特征参量提取及水分含量评估方法[J]. 电工技术学报, 2016, 31(10): 26-33. Yang Lijun, Gao Sihang, Gao Jun, et al.Characteri- stic parameters extracted from modified Cole-Cole model and moisture content assessment methods study on frequency-domain dielectric spectroscopy of oil-paper insulation[J]. Transactions of China Electro- technical Society, 2016, 31(10): 26-33. [22] 杨国清, 黎洋, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的介电特性[J]. 电工技术学报, 2019, 34(5): 1106-1115. Yang Guoqing, Li Yang, Wang Deyi, et al.Dielectric properties of nano-SiO2/epoxy resin modified by hyperbranched polyester[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1106-1115. [23] 林朝明, 叶荣. 油浸式变压器绝缘诊断方法的研究进展[J]. 电气技术, 2019, 20(12): 1-6. Lin Chaoming, Ye Rong.Research progress of insulation diagnosis method for oil-immersed trans- former[J]. Electrical Engineering, 2019, 20(12): 1-6. [24] 李长云, 郝爱东. 机-热协同老化对纤维素绝缘纸频域介电谱特性的影响[J]. 电工技术学报, 2019, 34(17): 3705-3712. Li Changyun, Hao Aidong.Effect of mechanical thermal synergistic aging on frequency domain dielectric spectrum characteristics of cellulose insu- lating paper[J]. Transactions of China Electro- technical Society, 2019, 34(17): 3705-3712. [25] Debye P.Polar molecules[M]. New York: Dover Publications Inc, 1929. [26] Lucarini V, Peiponen K E, Saarinen J J, et al.Kramers-Krong relations in optical materials research[M]. New York: Springer, 2005. [27] Hill R M, Pickup C.Barrier effects in dispersive media[J]. Journal of Materials Science, 1985, 20(12): 4431-4444. [28] Niklasson G A.Fractal aspects of the dielectric response of charge carriers in disordered materials[J]. Journal of Applied Physics, 1987, 62(7): R1-R14. [29] Shapiro B, Abrahams E.Scaling for the frequency- dependent conductivity in disordered electronic systems[J]. Physical Review B, 1981, 24(8): 4889-4891. [30] Dissado L A.A fractal interpretation of the dielectric response of animal tissues[J]. Physics in Medicine and Biology, 1990, 35(11): 1487-1503. [31] Singh B K, Kumar B.Impedance analysis and high temperature conduction mechanism of flux grown Pb(Zn1/3Nb2/3)0.91Ti0.09O3 single crystal[J]. Crystal Research & Technology, 2010, 45(10): 1003-1011.