Abstract:Owing to its maturity, stability and economy, doubly-fed induction generator (DFIG) is dominant in wind power generation system. In the actual operation process, the alternating thermal stress caused by random wind speed and changes in operating condition makes the reliability of the wind power converter gradually decrease. Most of the reliability evaluation models of wind power converter only consider the large load action or adopt the Miner linear fatigue cumulative model, while ignoring the influence of the small load and the health status on module remaining life. In this paper, the two factors are considered, and the two-stage fatigue accumulative model is used to establish the reliability evaluation model of converter. The power cycle test is designed to validate this model. At the same time, a 1.5MW doubly-fed wind power converter is analyzed under the actual wind speed, and the influence of the switching frequency and environment temperature on the reliability of doubly-fed wind power converter is compared under different health conditions. The results show that the switching frequency and the ambient temperature have great effects on the reliability of the converter, and the failure rate of the wind power converter rises significantly with the aging of the power device.
黄涛, 陈民铀, 赖伟, 徐盛友, 罗丹. 计及疲劳累积及健康状态的风电变流器可靠性评估模型[J]. 电工技术学报, 2018, 33(20): 4845-4854.
Huang Tao, Chen Minyou, Lai Wei, Xu Shengyou, Luo Dan. Reliability Evaluation Model of Wind Power Converter Considering Fatigue Accumulation and Health Status. Transactions of China Electrotechnical Society, 2018, 33(20): 4845-4854.
[1] 李辉, 刘盛权, 冉立, 等. 大功率并网风电机组变流器状态监测技术综述[J]. 电工技术学报, 2016, 31(8): 1-10.Li Hui, Liu Shengquan, Ran Li, et al. Overview of condition monitoring technologies of power converter for high power grid-connected wind turbine generator system[J]. Transactions of China Electro- technical Society, 2016, 31(8): 1-10. [2] Wilkinson M. Hendoiks B, Spinato F, et al.Methodology and results of the reliawind reliability field study[C]//European Wind energy Conference, Warsaw, 2010: 20-23. [3] 吕庆敏, 陆馨. 浅谈电力电子技术领域中的研究热点[J]. 电力电子技术, 2011, 45(5): 106-107.Lü Qingmin, Lu Xin. Discussion on research hotspots in power electronic technology[J]. Power Electronics, 2011, 45(5): 106-107. [4] Ghimire P, Vega A R D, Beczkowski S, et al. Improving power converter reliability: online monitoring of high-power IGBT modules[J]. IEEE Industrial Electronics Magazine, 2014, 8(3): 40-50. [5] Yang S, Bryant A, Mawby P, et al.An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 3151-3157. [6] Smet V, Forest F, Huselstein J J, et al.Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931-4941. [7] 赖伟, 陈民铀, 冉立, 等. 老化试验条件下的IGBT失效机理分析[J]. 中国电机工程学报, 2015, 35(20): 5293-5300.Lai Wei, Chen Minyou, Ran Li, et al. Analysis of IGBT failure mechanism based on ageing experi- ments[J]. Proceedings of the CSEE, 2015, 35(20): 5293-5300. [8] 江南, 陈民铀, 徐盛友, 等. 计及裂纹损伤的IGBT模块热疲劳失效分析[J]. 浙江大学学报: 工学版, 2017, 51(4): 825-833.Jiang Nan, Chen Minyou, Xu Shengyou, et al. Thermal fatigue of IGBT module considering crack damage[J]. Journal of Zhejiang University: Engin- eering Science, 2017, 51(4): 825-833. [9] Ciappa M, Fichtner W.Lifetime prediction of IGBT modules for traction applications[C]//38th IEEE International Reliability Physics Symposium, California, 2000: 210-216. [10] 杨珍贵, 杜雄, 孙鹏菊, 等. 风电全功率变流器参数对可靠性的影响分析[J]. 电工技术学报, 2015, 30(16): 137-145.Yang Zhengui, Du Xiong, Sun Pengju, et al. Analysis of effect of the converter parameters on full-rated wind power converters reliability[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 137-145. [11] 蒋泽甫. 风电转换系统可靠性评估及其薄弱环节辨识[D]. 重庆: 重庆大学, 2012. [12] Huang H, Mawby P A.A lifetime estimation technique for voltage source inverters[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 4113-4119. [13] Ma K, Liserre M, Blaabjerg F, et al.Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 590-602. [14] Huang Hui.Lifetime prediction for power con- verters[D]. Conventry: University of Warwick, 2012. [15] Lai Wei, Chen Minyou, Ran Li, et al.Experimental investigation on the effects of narrow junction temperature cycles on die-attach solder layer in an IGBT module[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1431-1441. [16] Lai Wei, Chen Minyou, Ran Li, et al.Low ΔTj stress cycle effects in IGBT power module die-attach lifetime modelling[J]. IEEE Transactions on Power Elec- tronics, 2015, 31(9): 6575-6585. [17] 赖伟. 计及低强度热载荷疲劳累积效应的IGBT功率器件寿命模型研究[D]. 重庆: 重庆大学, 2016. [18] 秦星. 风电变流器IGBT模块结温计算及功率循环能力评估[D]. 重庆: 重庆大学, 2014. [19] 高兵, 陈民铀, 杨帆, 等. 考虑机侧变流器复杂热载荷特性的寿命评估[J]. 电工技术学报, 2017, 32(13): 88-99.Gao Bing, Chen Minyou, Yang Fan, et al. Life estimation of generator side converter considering the comprehensive mission profiles[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 88-99. [20] 刘宾礼, 罗毅飞, 肖飞, 等. 适用于器件级到系统级热仿真的IGBT传热模型[J]. 电工技术学报, 2017, 32(13): 1-13.Liu Binli, Luo Yifei, Xiao Fei, et al. IGBT Thermal model for thermal simulation of device to system[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 1-13. [21] Manson S S.Thermal stress and low cycle fatigue[M]. New York: McGraw-Hill, 1966. [22] Miner M A.Cumulative damage in fatigue[J]. Applied Mechanics, 1945(12): 159-164. [23] 季海婷. 计及器件不同结温变化因素的风电变流器可靠性评估[D]. 重庆: 重庆大学, 2014.