Abstract:Traction converters are the key subsystem of urban rail transit trains, whose reliability has received extensive attention. According to an industry-based survey, IGBTs are the most fragile components in power electronic converters. The working condition of IGBT modules is subject to the output power of traction motors. The changes in the operations of the traction inverters could cause fluctuations in junction temperature of IGBTs, thereby causing damage to IGBTs. Consequently, the research on IGBT reliability technology is conducted in this paper, not only for the reliability improvement, but also for the cost reduction. Firstly, mission-profile-based lifetime prediction of IGBT modules in urban rail transit train traction converters is carried out. Then, the effect of control approach for traction converters on IGBT lifetime is analyzed. Last, the reliability-oriented traction converter control strategy is studied, which will improve the reliability and availability of traction converter.
林帅, 方晓春, 黎白泠, 林飞, 杨中平. 可靠性导向的城轨车辆牵引变流器控制策略[J]. 电工技术学报, 2021, 36(zk2): 704-712.
Lin Shuai, Fang Xiaochun, Li Bailing, Lin Fei, Yang Zhongping. Reliability-Oriented Control Strategy of Traction Converters in Urban Rail Transit Trains. Transactions of China Electrotechnical Society, 2021, 36(zk2): 704-712.
[1] 秦强强, 张骄, 李宇杰, 等. 基于列车运行状态的城轨地面混合储能装置分时段控制策略[J]. 电工技术学报, 2019, 34(增刊2): 760-769. Qin Qiangqiang, Zhang Jiao, Li Yujie, et al.Research on time-phased control strategy of urban rail ground hybrid energy storage device based on train operation status[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 760-769. [2] Yang Shaoyong, Bryant Angus, Mawby Philip, et al.An industry-based survey of reliability in power elec-tronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451. [3] 刘向向, 李志刚, 姚芳. 不同工作模式下的IGBT模块瞬态热特性退化分析[J]. 电工技术学报, 2019, 34(增刊2): 509-517. Liu Xiangxiang, Li Zhigang, Yao Fang.Degradation analysis of transient thermal characteristics of IGBT module under different conditions[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 509-517. [4] Harms Jeffrey W.Revision of MIL-HDBK-217, reliability prediction of electronic equipment[C]//2010 Proceedings-Annual Reliability and Maintaina-bility Symposium (RAMS), San Jose, CA, USA, 2010: 1-3. [5] Shahidul H M, Seungdeog C, Jeihoon B.Auxiliary particle filtering-based estimation of remaining useful life of IGBT[J]. IEEE Transactions on Indu-strial Electronics, 2017, 65(3): 2693-2703. [6] Ma Ke, Wang Huai, Frede B.New approaches to reliability assessment: using physics-of-failure for prediction and design in power electronics systems[J]. IEEE Power Electronics Magazine, 2016, 3(4): 28-41. [7] Ma Ke, Marcco L, Frede B, et al.Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 590-602. [8] Ma Ke, Frede B.Multi-timescale modelling for the loading behaviours of power electronics converter[C]//2015 IEEE Energy Conversion Congress and Expo-sition (ECCE), Montreal, QC, Canada, 2015: 5749-5756. [9] Choi Ui-Min, Ma Ke, Frede B.Validation of lifetime prediction of IGBT modules based on linear damage accumulation by means of superimposed power cycling tests[J]. IEEE Transactions on Industrial Electronics, 2017, 65(4): 3520-3529. [10] Lin Shuai, Fang Xiaochun, Lin Fei, et al.Lifetime prediction of IGBT modules based on mission profiles in traction inverter application[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 2019: 1-6. [11] 林帅, 方晓春, 林飞, 等. 基于任务剖面的牵引逆变器IGBT寿命预测[J]. 中国安全科学学报, 2019, 29(增刊1): 56-61. Lin Shuai, Fang Xiaochun, Lin Fei, et al.Mission profiles-based lifetime prediction for IGBT modules in traction inverter application[J]. China Safety Science Journal, 2019, 29(S1): 56-61. [12] 汪志. 基于CRH5型动车组国产化TCU的牵引电机高速区运行控制研究[D]. 北京: 北京交通大学, 2016. [13] ABB application note. Load-cycle capability of HiPak IGBT modules[EB/OL]. (2013-8-22). http://library.e.abb.com/public/1f4fb71e0af3356883257c8d00443ca1/Load-cycling%20capability%20of%20HiPak_5SYA%202043-04.pdf. [14] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727. Wang Xuemei, Zhang Bo, Wu Haiping.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electro-technical Society, 2019, 34(4): 717-727. [15] 汪波, 胡安, 唐勇. 基于电热模型的IGBT结温预测与失效分析[J]. 电机与控制学报, 2012, 16(8): 87-93. Wang Bo, Hu An, Tang Yong.Junction temperature forecast and failure analysis of IGBT based on electro-thermal model[J]. Electric Machines and Control, 2012, 16(8): 87-93. [16] 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. Jia Yingjie, Xiao Fei, Luo Yifei, et al.Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. [17] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250. Li Hui, Hu Yu, Wang Kun, et al.Thermal distribution and dynamic junction temperature calculation of IGBT power modules for wind turbine converters considering the influence of stray inductances[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4242-4250. [18] Arendt W, Ulrich N, Werner T, et al.Application manual power semiconductors[M]. Ilmenau: ISLE Verlag, 2011. [19] 周雒维, 张益, 王博. 一种基于调节缓冲电容的IGBT热管理方法[J]. 电机与控制学报, 2019, 23(4): 28-36. Zhou Luowei, Zhang Yi, Wang Bo.IGBT thermal management method based on snubber capacitor[J]. Electric Machines and Control, 2019, 23(4): 28-36.