Abstract:As an important part of ship power grid, power cable determines the reliability and stability of the whole ship power network. The humidity, temperature and various physical and chemical factors of ship working environment are far more complex than those of land. Research on insulation aging of ship cables shows that most of the faults of ship power grid are caused by cable faults, and the faults caused by insulation aging and other defects account for the vast majority of cable faults. Therefore effective online monitoring of cables can realize fault early warning and reduce the power grid of ship loss due to insulation failure. This paper mainly introduces the working principle of on-line monitoring methods for ship cable design, such as DC component method, AC component method, DC superposition method, dual frequency signal injection method, single frequency signal injection method, S injection method, dielectric loss factor method and partial discharge method. The monitoring method of signal injection for insulation is analyzed summarizes. The characteristics and scope of application of each method are summarized, and analyzes the existing problems of ship cable insulation on-line technology. And give the summary and prospect.
[1] 丰利军, 余林刚, 张宇. 舰船用电力电缆标准规范浅析[J]. 电线电缆, 2019(1): 20-23, 25. Feng Lijun, Yu Lingang, Zhang Yu.Analysis of the standards and specifications of shipboard power cables[J]. Electric Wire & Cable, 2019(1): 20-23, 25. [2] 黄光磊, 李喆, 杨丰源, 等. 直流交联聚乙烯电缆泄漏电流试验特性研究[J]. 电工技术学报, 2019, 34(1): 192-201. Huang Guanglei, Li Zhe, Yang Fengyuan, et al.Experimental research on leakage current of DC cross linked polyethylene cable[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 192-201. [3] 陈新, 李文鹏, 李震宇, 等. 高压直流XLPE绝缘材料及电缆关键技术展望[J]. 高电压技术, 2020, 46(5): 1571-1579. Chen Xin, Li Wenpeng, Li Zhenyu, et al.Prospect on key technology of the XLPE insulation materials and HVDC cables[J]. High Voltage Engineering, 2020, 46(5): 1571-1579. [4] 涂克颇. XLPE在线监测方法的研究[D]. 西安: 西安科技大学, 2005. [5] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro-technical Society, 2019, 34(1): 179-191. [6] Butler K L, Sarma N D R, Whitcomb C, et al. Shipboard systems deploy automated protection[J]. IEEE Computer Applications in Power, 1998, 11(2): 31-36. [7] 施振君. EPR绝缘低压舰船用电缆绝缘状态评估技术[J]. 通信电源技术, 2017, 34(5): 187-188, 191. Shi Zhenjun.Evaluation method of insulation state of EPR insulated low voltage ship[J]. Telecom Power Technology, 2017, 34(5): 187-188, 191. [8] Oonishi H, Urano F, Mochizuki T, et al. Development of new diagnostic method for hot-line XLPE cables with water trees[J]. IEEE Power Engineering Review, 1987, PER-7(1): 28-29. [9] 黄海鲲. 110kV交联聚乙烯电力电缆绝缘在线监测的研究[D]. 武汉: 武汉大学, 2004. [10] 王瑞琳. 基于交流叠加法的电缆绝缘在线监测系统设计[D]. 大连: 大连理工大学, 2016. [11] 赵聪. 对高压交联聚乙烯电缆的寿命评估及展望[J]. 电气技术, 2014, 15(4): 60-65. Zhao Cong.For the life of the cross-linked polythene cable for high pressure evaluation and prospects[J]. Electrical Engineering, 2014, 15(4): 60-65. [12] 陈巧勇, 文习山, 王一, 等. 交联聚乙烯电力电缆的绝缘在线检测[J]. 高压电器, 2003, 39(1): 60-62. Chen Qiaoyong, Wen Xishan, Wang Yi, et al.On-line insulation monitoring for cross-linked polyethylene power cable[J]. High Voltage Apparatus, 2003, 39(1): 60-62. [13] 庄劲武, 徐国顺, 戚连锁, 等. 双频法在浮地交流电网绝缘故障定位中的应用[J]. 电力自动化设备, 2003, 23(2): 83-86. Zhuang Jinwu, Xu Guoshun, Qi Liansuo, et al.Research on application of double frequency principle to insulation fault locating in earth free AC system[J]. Electric Power Automation Equipment, 2003, 23(2): 83-86. [14] 王勇. 船舶交流电力系统绝缘监测系统的研究[D].武汉: 华中科技大学, 2007. [15] 桑在中, 张慧芬, 潘贞存, 等. 用注入法实现小电流接地系统单相接地选线保护[J]. 电力系统自动化, 1996, 20(2): 11-12, 35. Sang Zaizhong, Zhang Huifen, Pan Zhencun, et al.Protection for single phase to earth fault line selection for underground power system by injecting signal[J]. Automation of Electric Power Systems, 1996, 20(2): 11-12, 35. [16] Soma K, Aihara M, Kataoka Y. Diagnostic method for power cable insulation[J]. IEEE Transactions on Electrical Insulation, 2007, EI-21(6): 1027-1032. [17] 李露露, 雍静, 曾礼强, 等. 基于系统电力扰动的交叉互联电缆绝缘整体老化在线监测[J]. 电工技术学报, 2018, 33(14): 3396-3405. Li Lulu, Yong Jing, Zeng Liqiang, et al.On-line monitoring of insulation overall aging for cross-bonded cables based on system power disturbances[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3396-3405. [18] 单秉亮, 李舒宁, 杨霄, 等. XLPE配电电缆缺陷诊断与定位技术面临的关键问题[J]. 电工技术学报, 2021, 36(22): 4809-4819. Shan Bingliang, Li Shuning, Yang Xiao, et al.Key problems faced by defect diagnosis and location technologies for XLPE distribution cables[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(22): 4809-4819. [19] 陈杰, 吴世林, 胡丽斌, 等. 退役高压电缆附件绝缘状态及理化性能分析[J]. 电工技术学报, 2021, 36(12): 2650-2658. Chen Jie, Wu Shilin, Hu Libin, et al.Analysis of insulation state and physicochemical property of retired high-voltage cable accessories[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(12): 2650-2658. [20] 奚航, 周凯, 曾琴, 等. 基于低频信号注入法的电缆绝缘在线监测[J]. 绝缘材料, 2019, 52(10): 73-79. Xi Hang, Zhou Kai, Zeng Qin, et al.On-line monitoring of cable insulation based on low fre-quency signal injection method[J]. Insulating Materials, 2019, 52(10): 73-79. [21] 廖瑞金, 周天春, 刘玲, 等. 交联聚乙烯电力电缆电树枝生长的混沌特性分析[J]. 电工技术学报, 2012, 27(5): 63-69. Liao Ruijin, Zhou Tianchun, Liu Ling, et al.The chaos characteristics analysis for electrical treeing propagation in XLPE power cables[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 63-69. [22] 陈曦, 骆高超, 曹杰, 等. 基于改进K-近邻算法的XLPE电缆气隙放电发展阶段识别[J]. 电工技术学报, 2020, 35(23): 5015-5024. Chen Xi, Luo Gaochao, Cao Jie, et al.Development stage identification of XLPE cable air-gap discharge based on improved K-nearest neighbor algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 5015-5024. [23] 霍耀斌. XLPE电缆的绝缘老化在线监测技术研究[D]. 阜新: 辽宁工程技术大学, 2019. [24] 谢声益, 杨帆, 黄鑫, 等. 基于太赫兹时域光谱技术的交联聚乙烯电缆绝缘层气隙检测分析[J]. 电工技术学报, 2020, 35(12): 2698-2707. Xie Shengyi, Yang Fan, Huang Xin, et al.Air gap detection and analysis of XLPE cable insulation based on Terahertz time domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2698-2707.