Quantitative Detection of the CS2 Produced by SF6 Decomposition Based on Ultraviolet Differential Optical Absorption Spectrometry
Cui Zhaolun1, Meng Fansheng2, Cheng Zheng3, Li Yalong1, Zhang Xiaoxing1
1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. Substation Access Room of State Grid Power Company of Shaoxing Shaoxing 312000 China; 3. State Grid Electric Power Company of Chongqing Yongchuan Chongqing 402160 China
Abstract:SF6 has been widely used as insulating gas in electrical insulation equipment. The research of its decomposition components is an important content for the equipment fault diagnosis and online monitoring. CS2 is one of the common SF6 decomposition components under the solid insulation defects. CS2 has absorption spectra in the UV band of 190~210nm. Based on the ultraviolet differential absorption spectroscopy (UV-DOAS), the UV spectrum detection platform was established. Firstly, the UV absorption spectrum of CS2 was obtained by experiments. Baseline deduction and wavelet processing methods were used to extract the effective signal in the absorption spectrum, which eliminated high and low frequency noise in the spectrum. Then, the spectral information is converted to the frequency domain by fast fourier transformation (FFT), and the linear relationship between the gas concentration and the spectral frequency domain eigenvalue was gained. The detection method of CS2 shows good linearity (R2=0.999 6) in the range of 10~200nL/L and satisfactory repeatability. The detection limit is 2.584nL/L. The method shows a potential for on-line monitoring of trace CS2 in decomposition components of SF6 insulation equipment.
崔兆仑, 孟凡生, 程政, 李亚龙, 张晓星. 基于紫外差分吸收光谱法的SF6分解组分CS2定量检测[J]. 电工技术学报, 2018, 33(18): 4389-4396.
Cui Zhaolun, Meng Fansheng, Cheng Zheng, Li Yalong, Zhang Xiaoxing. Quantitative Detection of the CS2 Produced by SF6 Decomposition Based on Ultraviolet Differential Optical Absorption Spectrometry. Transactions of China Electrotechnical Society, 2018, 33(18): 4389-4396.
[1] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54. Tang Ju, Yang Dong, Zeng Fuping, et al.Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54. [2] 乔胜亚, 周文俊, 唐念, 等. 不同吸附剂对GIS局部放电特征气体变化规律的影响[J]. 电工技术学报, 2016, 31(3): 113-120. Qiao Shengya, Zhou Wenjun, Tang Nian, et al.Effects of different adsorbents on the evolving law of target gases under patial discharge in GIS[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 113-120. [3] 唐炬, 裘吟君, 曾福平, 等. 局部放电下微水对SF6分解组分的形成及其影响规律[J]. 电工技术学报, 2012, 27(10): 13-19. Tang Ju, Qiu Yinjun, Zeng Fuping, et al.Formation mechanism and influence rules of trace levels H2O on SF6 characteristic decomposition components under partial discharge[J]. Transactions of China Electro- technical Society, 2012, 27(10): 13-19. [4] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24): 16-24. Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue.A review of degradation of SF6 waste by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 16-24. [5] 曾福平. SF6气体绝缘介质局部过热分解特性及微水影响机制研究[D]. 重庆: 重庆大学, 2014. [6] 肖焓艳, 张晓星, 肖淞, 等. 环境介质对介质阻挡放电降解SF6影响的实验[J]. 电工技术学报, 2017, 32(20): 20-27. Xiao Hanyan, Zhang Xiaoxing, Xiao Song, et al.Experiment of effects of ambient medium onsulfur hexafluoride degradation for a double dielectric barrier discharge reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 20-27. [7] 张丽娜, 陈永义, 梁桂州. 关于GIS和SF6断路器的现场检测方法[J]. 高压电器, 2001, 37(3): 47-48. Zhang Lina, Chen Yongyi, Liang Guizhou, et al.On the field detection of GIS and SF6 circuit breaker[J]. High Voltage Apparatus, 2001, 37(3): 47-48. [8] 张晓星, 姚尧, 唐炬, 等. 导电微粒局部放电下SF6分解组分色谱信号的曲线拟合分峰[J]. 电工技术学报, 2010, 25(7): 179-185. Zhang Xiaoxing, Yao yao, Tang Ju, et al. Separating overlapped chromatogram signals of SF6 decomposed products under PD of conductive particles based on curve-fitting[J]. Transactions of China Electro- technical Society, 2010, 25(7): 179-185. [9] 袁小芳, 祁炯, 苏镇西, 等. 气质谱联用仪检测SF6分解产物组分的技术研究[J]. 华东电力, 2011, 19(11): 1882-1885. Yuan Xiaofang, Qi Tong, Su Zhenxi, et al.SF6 decomposition product detection technology by GC-MS[J]. East China Electric Power, 2011, 19(11): 1882-1885. [10] 陈鹏, 王先培, 张军, 等. GIS中SO2气体紫外光谱检测及数据处理[J]. 仪表技术与传感器, 2015(12): 42-45. Chen Peng, Wang Xianpei, Zhang Jun, et al.Ultraviolet spectrum detection of SO2 gas in GIS and data processing[J]. Instrument Technique and Sensor, 2015(12): 42-45. [11] 裘吟君, 陈晓琳, 姜宏仁. SF6新气痕量杂质气相色谱分析新方法与电力行业SF6新气推荐标准[J]. 南方电网技术, 2009, 3(6): 73-76. Qiu Yinjun, Chen Xiaolin, Jiang Hongren.A new trace impurity gas chromatography analysis method for SF6 new gas and recommended standard of SF6 new gas for electric power industry[J]. Southern Power System Technology, 2009, 3(6): 73-76. [12] 张晓星, 任江波, 胡耀垓, 等. SF6局部放电分解组分长光程红外检测[J]. 电工技术学报, 2012, 27(5): 70-76. Zhang Xiaoxing, Ren Jiangbo, Hu Yaogai, et al.Research on long optical paths for SF6 partial dis- chargedecomposition components’ infrared detection[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 70-76. [13] 张晓星, 李新, 刘恒, 等. 基于悬臂梁增强型光声光谱的SF6特征分解组分H2S定量检测[J]. 电工技术学报, 2016, 31(15): 187-196. Zhang Xiaoxing, Li Xin, Liu Heng, et al.The quantitative Detection of SF6 characteristic decom- position component H2S based on cantilever enhanced photoacoustic spectrometry[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(15): 187-196. [14] Bolot’ko L M, Krasovskii A N, Lyudchik A M, et al.Measurement of the terrestrial ozone concentration by absorption UV spectroscopy[J]. Journal of Applied Spectroscopy, 2005, 72(6): 911-916. [15] Malicet J, Daumont D, Charbonnier J, et al.Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence[J]. Journal of Atmospheric Chemistry, 1995, 21(3): 263-273. [16] 黄杨珏, 周红, 汪进锋, 等. SF6分解物SO2的紫外吸收波段分析[J]. 高压电器, 2016, 52(12): 209-214. Huang Yangjue, Zhou Hong, Wang Jinfeng, et al.Analysis of ultraviolet absorption bands of SF6 decomposition products SO2[J]. High Voltage Apparatus, 2016, 52(12): 209-214. [17] 程林, 唐炬, 黄秀娟, 等. SF6局部过热状态下涉及有机绝缘材料的分解产物生成特性[J]. 高电压技术, 2015, 41(2): 453-460. Cheng Lin, Tang Ju, Huang Xiujuan, et al.SF6 partial overheating decomposition characteristics with organic insulating materials[J]. High Voltage Engineering, 2015, 41(2): 453-460. [18] Lower S.Chemical kinetics and reaction mechanisms[M]. New York: McGraw-Hill, 1981. [19] Ahmed S, Kumar V.Measurement of photoabsorption and fluorescence cross-sections for CS2 at 188.2~213 and 287.5~339.5nm[J]. Pramana, 1992, 39(4): 367-380. [20] 代荡荡, 王先培, 胡红红, 等. 基于紫外光谱的GIS局部放电快速检测方法研究[J]. 光谱学与光谱分析, 2014, 34(12): 3312-3316. Dai Dangdang, Wang Xianpei, Hu Honghong, et al.An ultraviolet spectroscopy method for rapid partial discharge detection in GIS[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3312-3316. [21] 李新. 基于紫外差分吸收光谱的SF6特征分解组分SO2和CS2定量检测研究[D]. 重庆: 重庆大学, 2016. [22] 刘恒. 基于悬臂梁增强型光声光谱的SF6特征分解组分H2S定量检测研究[D]. 重庆: 重庆大学, 2015. [23] Wang Lin, Zhang Yungang, Zhou Xue, et al.Optical sulfur dioxide sensor based on broadband absorption spectroscopy in the wavelength range of 198- 222nm[J]. Sensors and Actuators B: Chemical, 2017, 241: 146-150.