Review on Decomposition Characteristics of SF6 Alternative Gases
Zhou Zhenrui1,2, Han Dong1,2, Zhao Mingyue1,2, Zhang Guoqiang1,2
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:SF6 is an excellent insulating gas which is widely used in gas-insulated electrical equipment. However, SF6 has high global warming potential and poor environmental performance. In order to fundamentally eliminate the usage of SF6, it is vital to develop SF6 replacement technology. Most of the potential SF6 alternative gases are carbon-containing compounds. Due to different gas mixing schemes and faults, the variety of gas or solid decomposition products and their variations are quite different, which not only affect the choices of buffer gas, absorbent and solid material, but also are important foundations for the diagnosis of gas-insulated electrical equipment faults based on gas decomposition method. Therefore, from the perspective of decomposition characteristics, this paper introduces the domestic and international research progress on decomposition characteristics of several potential SF6 alternative gases, compares the decomposition characteristics under different experimental conditions in various literatures and summarizes the possible decomposition paths. On this basis, this paper makes a panoramic outlook on SF6 replacement technology from the aspects of environmental protection, toxicity, buffer gas, chemical deposits, absorbent and fault diagnosis.
[1] Maiss M, Steele L P, Francey R J, et al.Sulfur hexafluoride—a powerful new atmospheric tracer[J]. Atmospheric Environment, 1996, 30(10): 1621-1629. [2] 国家发展和改革委员会. 中华人民共和国气候变化第二次国家信息通报[M]. 北京: 中国经济出版社, 2013. [3] Christophorou L G, Olthoff J K, Green D S.Gases for electrical insulation and arc interruption: possible present and future alternatives to pure SF6[R]. NIST Technical Note 1425, 1997: 1-44. [4] Wooton R, Kegelman M.Gases superior to SF6 for insulation and interruption[R]. Electric Power Research Insititute (EPRI), EL-2620, 1982. [5] 次世代送变电机器のかス绝缘方式调查委员会. SF6の地球环境负荷とSF6混合·代替かス绝缘[R].日本电气学会技术报告第841号. [6] 王宝山, 余小娟, 侯华, 等. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33. Wang Banshan, Yu Xiaojuan, Hou Hua, et al.Review on the developments of structure-activity relationship and molecular design of the replacement dielectric gases for SF6[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 21-33. [7] Uchii T, Hoshina Y, Mori T, et al.Investigations on SF6-free gas circuit breaker adopting CO2 gas as an alternative arcquenching and insulating medium[C]// Christophorou L G, Olthoff J K, Vassiliou P. Gaseous Dielectrics X. New York: Springer, 2004: 205-210. [8] 肖登明. 气体绝缘与GIS [M]. 上海: 上海交通大学出版社, 2016. [9] Kieffel Y, Biquez F, Irwin T.SF6 Alternative Development for high voltage switchgears[C]//2015 IEEE Power & Energy Society General Meeting Denver, USA, 2015:1-5. [10] Kieffel Y, Girodet A, Piccoz D, et al. Use of a mixture comprising a hydrofluoroolefin as a medium-voltage arc-extinguishing and/or insulating gas and medium-voltage electrical device comprising same: US2014/0196932 A1[P]. 2014-07-17. [11] Chu F Y. SF6 Decomposition in gas-insulated equipment[J]. IEEE Transactions on Electrical Insulation, 1986, EI-21(5): 693-725. [12] Fu Yuwei,Rong Mingzhe,Yang Kang, et al.Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment[J]. Journal of Physics D: Applied Physics, 2016, 49(15): 155502. [13] Malik N H, Qureshi A H, Theophilus G D, et al.Prebreakdown phenomenon in SF6-N2 mixtures at various pressures[C]//1978 IEEE International Conference on Electrical Insulation, Windsor, Canada, 1978: 140-145. [14] 邱毓昌. SF6/N2混合气体用于GIS可能性探讨[J]. 高压电器, 1984, 1(5): 3-8. Qiu Yuchang.Discussion on the possibility of using SF6/N2 mixed gas for GIS[J]. High Voltage Apparatus, 1984, 1(5): 3-8. [15] Su-Youl Woo, Dong-Hoon Jeong, Kyoung-Bo Seo, et al.A study on dielectric strength and insulation property of SF6/N2 mixtures for GIS[J]. Journal of International Council on Electrical Engineering, 2012, 2(1): 104-109. [16] Safar Y A, Malik N H, Qureshi A H. Impulse breakdown behavior of negative rod-plane gaps in SF6-N2, SF6-Air and SF6-CO2 mixtures[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(5): 441-450. [17] 张静, 程林, 赵坤, 等. -50℃条件下SF6/N2混合气体的击穿特性[J]. 绝缘材料, 2017, 50(10): 43-47. Zhang Jing, Cheng Lin, Zhao Kun, et al.Breakdown characteristics of SF6/N2 mixture gas at -50℃[J]. Insulating Materials, 2017, 50(10): 43-47. [18] 李兴文, 朱凯, 郭泽, 等. SF6-CF4混合气体电弧开断特性的实验研究[J]. 中国电机工程学报, 2017, 37(11): 3315-3322, 3388. Li Xingwen, Zhu Kai, Guo Ze, et al.Experimental study on arc interruption characteristics of SF6 and its mixtures with CF4[J]. Proceedings of the CSEE, 2017, 37(11): 3315-3322, 3388. [19] Christophorou L G, Brunt R J V. SF6-N2 mixtures: basic and HV insulation properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(5): 952-1003. [20] Casanovas A M, Diaz J, Casanovas J.Spark decomposition of SF6, SF6/N2 (10:90 and 5:95) mixtures in the presence of solid additives (polyethylene, polypropylene or Teflon), gaseous additives (methane, ethylene, octofluoropropane, carbon monoxide or dioxide), water or oxygen[J]. Journal of Physics D: Applied Physics, 2002, 35: 2558-2569. [21] Casanovas A M, Coll I, Pradayrol C, et al.Influence of a solid insulator on the spark decomposition of SF6 and 50% SF6, 50%CF4 mixtures[J]. Journal of Physics D: Applied Physics, 1998, 31(20): 2835-2845. [22] 马虹斌, 邱毓昌, 孟玉婵, 等. SF6/CO2混合气体火花放电分解产物的气相色谱分析[J]. 高压电器, 1995, 4(3): 16-20. Ma Hongbin, Qiu Yuchang, Meng Yuchan, et al.Gas chromatographic analysis of spark discharge decomposition products of SF6/CO2 mixed gas[J]. High Voltage Apparatus, 1995, 4(3): 16-20. [23] Castonguay J, Dionne I.S2F10 and other heavy gaseous decomposition byproducts formed in SF6 and SF6-gas mixtures exposed to electrical discharges[C]//Gaseous Dielectrics VII, Springer, New York, 1994: 449-462. [24] Casanovas A M, Coll I, Pradayrol C, et al.Influence of a solid insulator on the spark decomposition of SF6 and 50% SF6, 50%CF4 mixtures[J]. Journal of Physics D: Applied Physics, 1998, 31(20): 2835-2845. [25] Boukhalfa N, Goldman A, Goldman M, et al.CO2 to CO conversion in corona discharge[C]//Proceedings International Symposium on Plasma Chemistry, 1987: 787-792. [26] 周安春, 高理迎, 冀肖彤, 等. SF6/N2混合气体用于GIS母线的研究与应用[J]. 电网技术, 2018, 42(10): 3429-3435. Zhou Anchun, Gao Liying, Yi Xiaotong, et al.Research and application of SF6/N2 mixed gas used in GIS bus[J]. Power System Technology, 2018, 42(10): 3429-3435. [27] 张然, 王珏, 李璟, 等. 替代SF6的环境友好混合气体c-C4F8/N2绝缘特性[J]. 高电压技术, 2017, 43(2): 414-419. Zhang Ran, Wang Jue, Li Jing, et al.Insulation characteristics of environmentally friendly mix gas c-C4F8/N2 substituting SF6[J]. High Voltage Engineering, 2017, 43(2): 414-419. [28] Takuma T, Hamada S, Yamamoto O, et al.Applying a gas mixture containing c-C4F8 as an insulation medium[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 1075-1081. [29] Zhong L, Cressault Y, Teulet P.Thermophysical and radiation properties of high-temperature C4F8-CO2 mixtures to replace SF6 in high-voltage circuit breakers[J]. Physics of Plasmas, 2018, 25(3): 033502. [30] Devins J C. Replacement gases for SF6[J]. IEEE Transactions on Electrical Insulation, 1980, EI-15(2): 81-86. [31] Okubo H, Yamada T, Hatta K, et al.Partial discharge and breakdown mechanisms in ultra-dilute SF6 and PFC gases mixed with N2 gas[J]. Journal of Physics D: Applied Physics, 2002, 35(21): 2760-2765. [32] Wada J, Ueta G, Okabe S, et al.Dielectric properties of gas mixtures with per-fluorocarbon gas and gas with low liquefaction temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 838-847. [33] Cobos C J, Hintzer K, Solter L, et al.Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8[J]. Physical Chemistry Chemistry Physical, 2015, 17(48): 32219-32224. [34] Yokoyama A, Yokoyama K, Fujisawa G.Molecular beam study on infrared multiphoton dissociation of octafluorocyclobutane[J]. Chemical Physics Letters, 1995, 237(1-2): 106-110. [35] Zhang Ying, Li Yi, Zhang Xiaoxing, et al.Insights on decomposition process of c-C4F8 and c-C4F8/N2 mixture as substitutes for SF6[J]. Royal Society Open Science, 2018, 5(10): 181104. [36] Xiao Song, Li Yi, Zhang Xiaoxing, et al.Influence of trace water on decomposition mechanism of c-C4F8 as environmental friendly insulating gas at high temperature[J]. AIP Advances, 2018, 8(12): 125202. [37] Xiao Song, Tian Shuangshuang, Zhang Xiaoxing, et al.The Influence of O2 on Decomposition Characteristics of c-C4F8/N2 Environmental Friendly Insulating Gas[J]. Processes, 2018, 6(10): 174. [38] 邓先钦, 薛鹏, 赵谡, 等. c-C4F8/N2混合气体稍不均匀电场下绝缘性能及放电分解产物的实验研究[J]. 电工电能新技术, 2017, 36(7): 73-77. Deng Xianqin, Xue Peng, Zhao Su, et al.Experimental research on insulation characteristics and decomposition products of c-C4F8/N2 mixtures in slightly non-uniform electric field[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(7): 73-77. [39] 满林坤, 高靖, 邓鑫阳, 等. c-C4F8/CO2混合气体的绝缘子沿面闪络性能研究[J]. 绝缘材料, 2019, 52(1): 22-28. Man Linkun, Gao Jing, Deng Xinyang, et al.Research on insulator surface flashover properties of c-C4F8/CO2 mixed gas[J]. Insulating Materials, 2019, 52(1): 22-28. [40] Takuma T, Hamada S, Yamamoto O.Application of a gas mixture with c-C4F8 in gas insulation[C]//1999 Eleventh International Symposium on High Voltage Engineering, London, UK, 1999:197-200. [41] 肖登明. 环保型绝缘气体的发展前景[J]. 高电压技术, 2016, 42(4): 1035-1046. Xiao Dengming.Development prospect of gas insulation based on protection[J]. High Voltage Engineering, 2016, 42(4):1035-1046. [42] 李康, 张国强, 邢卫军, 等. c-C4F8及其与N2混合绝缘气体在典型故障时分解生成物的实验分析[J]. 高电压技术, 2012, 38(4): 985-992. Li Kang, Zhang Guoqiang, Xing Weijun, et al.Experiment analysis of decomposition products in typical fault of c-C4F8 gasandinsulating gas mixture containing c-C4F8 and N2[J]. High Voltage Engineering, 2012, 38(4): 985-992. [43] Li Kang, Niu Wenhao, Lin Tao, et al.Study of the decomposition of c-C4F8 and its mixture with N2 under 50Hz ac corona discharge[C]//2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, China 2013:1229-1232. [44] 李康. c-C4F8混合气体替代SF6气体用于电力设备的应用基础研究[D]. 北京: 中国科学院电工研究所, 2012. [45] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. [46] Urquijo J D.Is CF3I a good gaseous dielectric? a comparative swarm study of CF3I and SF6[J]. Journal of Physics: Conference Series, 2007, 86(1): 1-10. [47] Taki M, Maekawa D, Odaka H, et al.Interruption capability of CF3I Gas as a substitution candidate for SF6 gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(2): 341-346. [48] Köckert H, Heathcote D, Lee J W L, et al. C-I and C-F bond-breaking dynamics in the dissociative electron ionization of CF3I[J]. Royal Socety of Chemisty, 2019, 21(26): 14296-14305. [49] 王璁, 周福文, 屠幼萍, 等. 直流电压下CF3I/N2混合气体的放电副产物[J]. 中国电机工程学报, 2017, 37(4): 1268-1274. Wang Cong, Zhou Fuwen, Tu Youping, et al.By-products of CF3I/N2 gas mixtures under DC voltage discharge[J]. Proceedings of the CSEE, 2017, 37(4): 1268-1274. [50] Jamil M K M, Ohtsuka S, Hikita M, et al. Gas by-products of CF3I under AC partial discharge[J]. Journal of Electrostatics, 2011, 69(6): 611-617. [51] Zhang Xiaoxing, Xiao Song, Han Yefei, et al.Analysis of the feasibility of CF3I/CO2 used in C-GIS by partial discharge inception voltages in positive half cycle and breakdown voltages[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(6): 3234-3243. [52] Widger P, Chen L, Haddad A.Deposited by-products of CF3I-CO2 gas mixtures after lightning impulse flashover[C]//2016 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal, 2016: 1-5. [53] Taked T, Matsuoka S, Kumada A, et al.By-product generation through electrical discharge in CF3I gas and its effect to insulation characteristics[J]. IEEJ Transactions on Power and Energy, 2011, 131(10): 859-864. [54] 赵小令, 谭东现, 赵谡, 等. CF3I气体在C-GIS中开断电弧后的副产物分析[J]. 中国电机工程学报, 2019, 39(14): 4325-4333. Zhao Xiaoling, Tan Dongxian, Zhao Su, et al.Byproduct analysis of CF3I gas after arc interruption in C-GIS[J]. Proceedings of the CSEE, 2019, 39(14): 4325-4333. [55] Kieffel Y, Berteloot T, Souchal S, et al.Characteristics of g3 - an alternative to SF6[C]//the CIGRÉ Winnipeg 2017 Colloquium Study Committees A3, B4 & D1, Winnipeg, Canada, 2017: 152. [56] 王凌志, 周文俊, 张天然, 等. C4F7N/CO2混合气体在均匀和极不均匀电场下的工频绝缘性能[J]. 高电压技术, 2019, 45(4): 1101-1107. Wang Lingzhi, Zhou Wenjun, Zhang Tianran, et al.Power requency insulation experiments of C4F7N/CO2 mixture under uniform and extremely non-uniform electric field[J]. High Voltage Engineering, 2019, 45(4): 1101-1107. [57] Chachereau A, Hösl A, Franck C M.Electrical insulation properties of the perfluoronitrile C4F7N[J]. Journal of Physics D: Applied Physics, 2018, 51(49): 495201. [58] Wang Chunlin, Wu Yi, Sun Hao, et al.Thermophysical properties calculation of C4F7N/CO2 mixture based on computational chemistry—a theoretical study of SF6 alternative[C]//2017 4th International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), Xian, China, 2017: 255-258. [59] Yu Xiaojuan, Hou Hua, Wang Baoshan.Mechanistic and kinetic investigation on the thermal unimolecular reaction of heptafluoroisobutyronitrile[J]. The Journal of Physical Chemistry A, 2018, 122(38): 7704-7715. [60] Fu Yewei, Yang Aijun, Wang Xiaohua, et al.Theoretical study of the decomposition mechanism of C4F7N[J]. Journal of Physics D: Applied Physics, 2019, 52(24): 245203. [61] 张晓星, 陈琪, 李祎, 等. 环保型绝缘介质C3F7CN/CO2的分解机理[J]. 中国电机工程学报, 2018, 38(24): 7174-7182, 7444. Zhang Xiaoxin, Chen Qi, Li Yi, et al.Decomposition mechanism of environmental-friendly insulating medium C3F7CN/CO2[J]. Proceedings of the CSEE, 2018, 38(24): 7174-7182, 7444. [62] 赵明月, 韩冬, 荣文奇, 等. 电晕放电下全氟异丁腈(C4F7N)与空气混合气体的分解产物规律及其形成原因分析[J]. 高电压技术, 2018, 44(10): 3174-3182. Zhao Mingyue, Han Dong, Rong Wenqi, et al.Analysis of decomposition by-products and its formation mechanism of C4F7N/air mixed gases under AC corona discharge[J]. High Voltage Engineering, 2018, 44(10): 3174-3182. [63] 赵明月, 韩冬, 荣文奇, 等. 电晕放电下二元全氟异丁腈(CF3)2CFCN混合气体的分解特性分析[J]. 高电压技术, 2019, 45(4): 1078-1085. Zhao Mingyue, Han Dong, Rong Wenqi, et al.Decomposition characteristics of binary mixture of (CF3)2CFCN buffer gases under corona discharge[J]. High Voltage Engineering, 2019, 45(4): 1078-1085. [64] Meyer F, Huguenot P, Walter M, et al.Application of fluoronitrile/CO2/O2 mixture in high voltage products to lower the environment footprint[C]//Conference Internation Des Grands Reseaux Electriques 2018, Paris, France, 2018: 201. [65] Kieffel Y, Biquez F, Vigouroux D, et al.Characteristics of g3- an alternative to SF6[C]//24th International Conference & Exhibition on Electricity Distribution (CIRED), Glasgow, England, 2017: 54-57. [66] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J]. 高电压技术, 2020, 46(1): 335-341. Zheng Zheyu, Li han, Zhou Wenjun, et al. Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM. High Voltage Engineering, 2020, 46(1): 335-341. [67] Mantilla J, Claessens M, Kriegel M.Environmentally friendly perfluoroketones-based mixture as switching medium in high voltage circuit breakers[C]// Conference Internation Des Grands Reseaux Electriques, 2016, Paris, France, 2016: 113. [68] Hyrembach M, Hintzen T, Müller P, et al.Alternative gas insulation in medium-voltage switchgear[C]//23rd International Conference on Electricity Distribution, 2015. [69] Mantilla J D, Gariboldi N, Grob S, et al.Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]//2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, USA, 2014: 469-473. [70] Stoller P C, Doiron C B, Tehlar D, et al.Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(5): 2712-2721. [71] 李兴文, 邓云坤, 姜旭, 等. 环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J]. 高电压技术, 2017, 43(3): 708-714. Li Xingwen, Deng Yunkun, Jiang Xu, et al.Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J]. High Voltage Engineering, 2017, 43(3): 708-714. [72] 王小华, 傅熊雄, 韩国辉, 等. C5F10O/CO2混合气体的绝缘性能[J]. 高电压技术, 2017, 43(3): 715-720. Wang Xiaohua, Fu Xiongxiong, Han Guohui, et al.Insulation performance of C5F10O/CO2 gas mixture[J]. High Voltage Engineering, 2017, 43(3): 715-720. [73] Zhong Linlin, Rong Mingzhe, Wang Xiaohua, et al.Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential[J]. AIP Advances, 2017, 7(7): 075003. [74] Fu Yuwei, Wang Xiaohua, Li Xi, et al.Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)[J]. AIP Advances, 2016, 6(8): 085305. [75] Fu Yuwei, Rong Mingzhe, Wang Xiaohua, et al.Rate constants of C5F10O decomposition reactions at temperatures of 300-3500 K[J]. Journal of Physics D: Applied Physics, 2019, 52(3): 035202. [76] Chen Li, Li Xingwen, Xiong Jiayu, et al.Chemical kinetics analysis of two C5-perfluorinated ketone (C5 PFK) thermal decomposition products: C4F7O and C3F4O[J]. Journal of Physics D: Applied Physics, 2018, 51(43): 435202. [77] Zhang Xiaoxing, Li Yi, Xiao Song, et al.Decomposition mechanism of C5F10O: an environmentally friendly insulation medium[J]. Environmental Science & Technology, 2017, 51(17): 10127-10136 [78] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Decomposition characteristics of C5F10O/air mixture as substitutes for SF6 to reduce global warming[J]. Journal of Fluorine Chemistry, 2018, 208(2018):65-72. [79] 李祎, 张晓星, 肖淞, 等. 环保型绝缘介质C5F10O放电分解特性[J]. 中国电机工程学报, 2018, 38(14): 4298-4306, 4336. Li Yi, Zhang Xiaoxin, Xiao Song, et al.study on the discharge decomposition characteristics of an environmental-friendly insulating medium C5F10O[J]. Proceedings of the CSEE, 2018, 38(14): 4298-4306, 4336. [80] Tatarinov A V, Bilera I V, Avtaeva S V, et al.Dielectric barrier discharge processing of trans -CF3CH=CHF and CF3C(O)CF(CF3)2, their mixtures with air, N2, CO2 and analysis of their decomposition products[J]. Plasma Chemistry and Plasma Processing, 2015, 35(5): 845-862. [81] Hyrenbach M, Paul T A, Owens J.Environmental and safety aspects of airplus insulated GIS[J]. CIRED - Open Access Proceedings Journal, 2017, 2017(1): 132-135. [82] 赵明月, 韩冬, 韩先才, 等. C6F12O/N2与C6F12O/空气混合气体的电晕放电分解产物分析[J]. 电工电能新技术, 2018, 37(11): 1-8. Zhao Mingyue, Han Dong, Han Xiancai, et al.Decomposition by-products of C6F12O/N2 and C6F12O/air mixed gases under AC 50Hz corona discharge[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11): 1-8. [83] 田双双, 张晓星, 肖淞, 等. 工频交流电压下C6F12O与N2混合气体的击穿特性和分解特性[J]. 中国电机工程学报, 2018, 38(10): 3125-3132, 3165. Tian Shaungshuang, Zhang Xiaoxing, Xiao Song, et al.Breakdown characteristics and decomposition characteristics of C6F12O and N2 mixed gas under AC voltage[J]. Proceedings of the CSEE, 2018, 38(10): 3125-3132, 3165. [84] 李祎, 张晓星, 陈琪, 等. 气体绝缘介质C4F7N的急性吸入毒性实验[J]. 高电压技术, 2019, 45(1): 109-116. Li Yi, Zhang Xiaoxin, Chen Qi, et al.Acute inhalation toxicity studies of gas insulating medium C4F7N[J]. High Voltage Engineering, 2019, 45(1): 109-116. [85] Lutz B, Juhre K, Kuschel M, et al.Behavior of gaseous dielectrics with low global warming potential considering[C]//Proceedings of the CIGRÉ Winnipeg 2017 Colloquium Study Committees A3, B4 & D1, Winnipeg, Canada, 2017: 140. [86] European Chemicals Agency.C&L inventory database[DB/OL]. [2019-11-20]https://echa.europa.eu/. [87] Zhong Linglin, Wang Jiayu, Xu Jie, et al.Effects of buffer gases on plasma properties and arc decaying characteristics of C4F7N-N2 and C4F7N-CO2 arc plasmas[J]. Plasma Chemistry and Plasma Processing, 2019, 39(6): 1379-1396. [88] Seegera M, Smeetsb R, Yanc J, et al.Recent trends in development of high voltage circuit breakers with SF6 alternative[J]. Plasma Physics and Technology, 2017, 291(1): 26-29. [89] Cressault Y, Connord V, Hingana H, et al.Transport properties of CF3I thermal plasmas mixed with CO2 , air or N2 as an alternative to SF6 plasmas in high-voltage circuit breakers[J]. Journal of Physics D: Applied Physics, 2011, 44(49): 495202. [90] Fu Yuwei, Wang Xiaohua, Yang Aijun, et al.The varying characteristics of C5F10O decomposition components at 300 K - 3500 K with a chemical kinetic model[J]. AIP Advances, 2019, 9(1): 015318. [91] 李涵, 郑哲宇, 袁瑞君, 等. 气体绝缘设备中气固材料的相容性[J]. 电工技术学报, 2020, 35(11): 2460-2468. Li Han, Zheng Zheyu, Yuan Ruijun, et al.Compatibility between gas and solid materials in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2460-2468. [92] 李康, 张国强. 基于碳沉积抑制技术的氟碳混合气体绝缘开关装置: 201310041278.9[P].2013-05-08. [93] 邢卫军. c-C4F8/N2混合气体替代SF6气体用于电力设备的基础研究[D]. 北京: 中国科学院电工研究所, 2012. [94] Lin Qiming, Zhao Su, Xiao Dengming, et al.Breakdown characteristics of CF3I/N2/CO2 mixture in power frequency and lightning impulse voltages[J]. Plasma Science and Technology, 2019, 21(1): 015401. [95] 覃兆宇, 郑宇, 周文俊, 等. 针-板电场中SF6分解气体的含量比值特性及吸附剂的影响[J]. 高电压技术, 2017, 43(9): 2919-2926. Qin Zhanyu, Zheng Yu, Zhou Wenjun, et al.Characteristics of contents ratio of sf6 decomposed gases in point-plate electric field and influence of absorbents[J]. High Voltage Engineering, 2017, 43(9): 2919-2926. [96] 唐炬, 王立强, 张潮海, 等. 吸附剂对局部过热性故障下SF6分解特征组分的吸附特性[J]. 高电压技术, 2015, 41(11): 3538-3545. Tang Ju, Wang Liqiang, Zhang Haichao, et al.Adsorption regularity of adsorbents on SF6 decomposition characteristics components under partial overthermal fault[J]. High Voltage Engineering, 2015, 41(11): 3538-3545. [97] 赵明月, 韩冬, 周朕蕊, 等. 活性氧化铝和分子筛对C3F7CN/CO2及其过热分解产物的吸附特性[J]. 电工技术学报, 2020, 35(1): 88-96. Zhao Mingyue, Han Dong, Zhou Zhenrui, et al.Adsorption Characteristics of activated alumina and molecular sieves for C3F7CN/CO2 and its decomposition by-products of overheating fault[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 88-96. [98] Kasuya H, Kawamura Y, Mizoguchi H, et al.Interruption capability and decomposed gas density of CF3I as a substitute for SF6 gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1196-1203. [99] 肖淞, 张季, 张晓星, 等. 活性氧化铝对新型环保绝缘气体C3F7CN/N2及其放电分解产物吸附特性[J]. 高电压技术, 2018, 44(10): 3135-3140. Xiao Song, Zhang Ji, Zhang Xiaoxing, et al.Adsorption characteristics of γ-Al2O3 for the environment-friendly insulating medium C3F7CN/N2 and its decomposition products[J]. High Voltage Engineering, 2018, 44(10): 3135-3140. [100] 侯华, 颜湘莲, 余小娟, 等. 分子筛吸附C4F7N/ CO2混合绝缘气体及其分解产物的理论研究[J]. 高电压技术, 2019, 45(4): 1040-1047. Hou Hua, Yan Xianglian, Yu Xiaojuan, et al.Theoretical investigation on the adsorption of C4F7N/CO2 dielectric gas and decomposition products in zeolite[J]. High Voltage Engineering, 2019, 45(4): 1040-1047. [101] 林涛. 绝缘故障下六氟化硫分解特性与故障诊断方法的实验研究[D]. 北京: 中国科学院电工研究所, 2014. [102] 颜湘莲, 王承玉, 季严松, 等. 气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J]. 电工技术学报, 2015, 30(22): 231-238. Yan Xianglian, Wang Chengyu, Ji Yansong, et al.Modeling of the relation between SF6 decomposition products and interior faults in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 231-238. [103] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54. Tang Ju, Yang Dong, Zeng Fuping, et al.Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54. [104] 周永言, 乔胜亚, 周文俊, 等. GIS中S2OF10作为局部放电特征气体的有效性分析[J]. 中国电机工程学报, 2016, 36(3): 871-878. Zhou Yongyan, Qiao Shengya, Zhou Wenjun, et al.Validity analysis of S2OF10 as a target gas of partial discharge in GIS[J]. Proceedings of the CSEE, 2016, 36(3): 871-878.