Effect of Particle Size on Degradation of SF6 by Dielectric Barrier Discharge
Zhang Xiaoxing1, Zhou Chang1, Cui Zhaolun2, Zhang Guozhi1, Wu Yunjian1
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China; 2. School of Electrical Power South China University of Technology Guangzhou 510640 China
Abstract:Sulfur hexafluoride (SF6) is a widely used insulating gas, but its strong greenhouse effect can cause great potential harm to the atmospheric environment. Degradation of SF6 by dielectric barrier discharge (DBD) based on packed-bed reactor is a promising treatment, but the influence of many parameters such as the size of packed medium is still unknown. In this paper, the effects of γ-Al2O3 particles with diameters of 1mm, 2mm and 4mm on the degradation of SF6 were investigated based on packed-bed type DBD. It is found that the small size of the particles will reduce the air gap space in the reaction area, so that the DBD discharge system tends to produce filamentous discharge, the degradation rate and energy efficiency of 2mm packing system are better than those of 1mm and 4mm systems, which may be attributed to the fact that the 2mm packed particles take into account the important factors of larger active contact area and longer gas residence time. Compared with 2mm and 4mm systems, the 1mm system can promote SO2 gas production and inhibit SO2F2, SOF2 and SOF4 production. The experimental results provide theoretical support and technical guidance for the industrial harmless degradation of SF6.
[1] 任利海. 六氟化硫:最可怕的温室气体[J]. 生态经济, 2020, 36(3): 5-8. Ren Lihai.Sulfur hexafluoride: the worst greenhouse gas[J]. Ecological Economy, 2020, 36(3): 5-8. [2] Fang Xuekun, Hu Xia, Greet J M, et al.Sulfur hexafluoride (SF6) emission estimates for China: an inventory for 1990-2010 and a projection to 2020[J]. Environmental Science & Technology, 2013, 47(8): 3848-3855. [3] 吕喆. 六氟化硫:被遗忘的温室气体[J]. 中国战略新兴产业, 2014, 9(32): 82-84. Lü Zhe, Sulfur hexafluoride: the forgotten greenhouse gas[J]. China Strategic Emerging Industry, 2014, 9(32): 82-84. [4] Christophorou L G, Olthoff J K, Van Brunt R J. Sulfur hexafluoride and the electric power industry[J]. IEEE Electrical Insulation Magazine, 1997, 13(5): 20-24. [5] Lee B, Kim S, Song J, et al.Conceptual design of a new SF6 abatement technology using a multi-bed series reactor for the production of valuable chemicals free of toxic wastes[J]. Energy Science and Engineering, 2018, 6(2): 73-82. [6] Song Xiaoxiao, Liu Xingang, Ye Zhaolian, et al.Photo- degradation of SF6 on polyisoprene surface: impli- cation on elimination of toxic byproducts[J]. Journal of Hazardous Materials, 2009, 168(1): 493-500. [7] Govindan M, Gopal R A, Moon I S.Electrochemical sequential reduction and oxidation facilitates the continual ambient temperature degradation of SF6 to nontoxic gaseous compounds[J]. Chemical Engineering Journal, 2020, 382: 122881. [8] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24): 16-24. Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue.A review of degradation of SF6 waste by low tem- perature plasma[J]. Transactions of China Electro- technical Society, 2016, 31(24): 16-24. [9] Xiao Song, Shi Shengyao, Li Yi, et al.Review of decomposition characteristics of eco-friendly gas insulating medium for high-voltage gas-insulated equipment[J]. Journal of Physics D: Applied Physics, 2021, 54(5): 373002. [10] Xiao Song, Gao Bing, Pang Xuanpei, et al.The sensitivity of C4F7N to electric field and its influence to environment-friendly insulating gas mixture C4F7N/ CO2[J]. Journal of Physics D: Applied Physics, 2021, 54(5): 055501. [11] Kim J H, Cho C H, Shin D H, et al.Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor[J]. Journal of Hazardous Materials, 2015, 294: 41-46. [12] 李寿哲, 谢士辉, 吴悦, 等. 温室气体SF6和CF4的大气压微波等离子体降解技术[J]. 高电压技术, 2021, 47(8): 3012-3019. Li Shouzhe, Xie Shihui, Wu Yue, et al.Decom- position of greenhouse gas of SF6 and CF4 by means of atmospheric pressure microwave plasma torch[J]. High Voltage Engineering, 2021, 47(8): 3012-3019. [13] Son Y S, Lee S J, Choi C Y, et al.Decomposition of high concentration SF6 using an electron beam[J]. Radiation Physics and Chemistry, 2016, 124: 220-224. [14] 李亚龙, 张晓星, 崔兆仑, 等. NH3对DBD降解SF6影响的试验研究[J]. 电工技术学报, 2019, 34(24): 5262-5269. Li Yalong, Zhang Xiaoxing, Cui Zhaolun, et al.Experiment of effect of ammonia on degradation of sulfur hexafluoride by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5262-5269. [15] Joshi A V.Decomposition of SF6-R134a effluents by RF plasma[J]. Nuclear Instruments & Methods in Physics Research, 2012, 661: S245-S248. [16] Ahmadi Z, Khani M R, Kooshki S, et al.Investigation of variation power and additive gas effect on the SF6 destruction using atmospheric microwave plasma torch[J]. IEEE Transactions on Plasma Science, 2011, 39(9): 1834-1841. [17] 张晓星, 王宇非, 崔兆仑, 等. 不同填充材料对介质阻挡放电降解SF6的实验研究[J]. 电工技术学报, 2021, 36(2): 397-406. Zhang Xiaoxing, Wang Yufei, Cui Zhaolun, et al.Experimental study on the degradation of SF6 by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406. [18] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [19] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [20] Wang Weizong, Kim H H, van Laer K, et al. Supple- mentary data: streamer propagation in a packed bed plasma reactor for plasma catalysis applications[J]. Chemical Engineering Journal, 2018, 334: 2467-2479. [21] Di Lanbo, Zhang Jingsen, Ma Cunhua, et al.Atmospheric- pressure dielectric barrier discharge cold plasma for synthesizing high performance Pd/C formic acid dehydrogenation catalyst[J]. Catalysis Today, 2019, 337: 201-207. [22] 王瑞雪, 李忠文, 虎攀, 等. 低温等离子体化学毒剂洗消技术研究进展[J]. 电工技术学报, 2021, 36(13): 2767-2781. Wang Ruixue, Li Zhongwen, Hu Pan, et al.Review of research progress of plasma chemical warfare agents degradation[J]. Transactions of China Electrotech- nical Society, 2021, 36(13): 2767-2781. [23] An H T Q, Huu T P, van T L, et al. Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: toluene removal[J]. Catalysis Today, 2011, 176(1): 474-477. [24] Mei Danhua, Ashford B, He Yaling, et al.Plasma- catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor: Effect of catalyst supports[J]. Plasma Processes and Polymers, 2017, 14(6): 1600076. [25] 钱树楼, 魏俊, 秦豫川, 等. 颗粒填充对介质阻挡放电制臭氧性能的影响[J]. 核聚变与等离子体物理, 2017, 37(3): 366-372. Qian Shulou, Wei Jun, Qin Yuchuan, et al.Effect of particle packed on properties of synthetic ozone by dielectric barrier discharge[J]. Nuclear Fusion and Plasma Physics, 2017, 37(3): 366-372. [26] Lee H M, Chang M B, Wu Kuanyu.Abatement of sulfur hexafluoride emissions from the semicon- ductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. [27] Chen H L, Lee H M, Li Chuncheng, et al.Influence of nonthermal plasma reactor type on CF4 and SF6 Abatements[J]. IEEE Transactions on Plasma Science, 2008, 36(2): 509-515. [28] Butterworth T, Elder R, Allen R.Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor[J]. Chemical Engineering Journal, 2016, 293: 55-67. [29] El-Shafie M, Kambara S, Hayakawa Y.Alumina particle size effect on H2 production from ammonia decomposition by DBD plasma[J]. Energy Reports, 2020, 6(S9): 25-30. [30] Zhang Xiaoxing, Xiao Hanyan, Hu Xiongxiong, et al.Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma[J]. AIP Advances, 2016, 6(11): 115005. [31] Fang Zhi, Ji Shengchang, Pan Jun, et al.Electrical model and experimental analysis of the atmospheric- pressure homogeneous dielectric barrier discharge in He[J]. IEEE Transactions on Plasma Science, 2012, 40(3): 883-891. [32] Reichen P, Sonnenfeld A, von Rohr P R. Discharge expansion in barrier discharge arrangements at low applied voltages[J]. Plasma Sources Science and Technology, 2011, 20(5): 055015. [33] Zhang Xiaoxing, Xiao Hanyan, Hu Xiongxiong, et al.Effects of reduced electric field on sulfur hexafluo- ride removal for a double dielectric barrier discharge reactor[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 563-570. [34] Kurte R, Beyer C, Heise H M, et al.Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition[J]. Analytical & Bioanalytical Chemistry, 2002, 373(7): 639-646.