Experimental Study on Ring Surface Dielectric Barrier Discharge Characteristics of High Frequency and High Voltage Excitation
Li Wenhui1, Jiang Hui1, Yang Fan1, Liu Haibo2, Zhou Yang3
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. Communication Sergeant School Army Engineering University Chongqing 400035 China; 3. Chengdu Power Supply Company of the State Grid Chengdu 610021 China
Abstract:Based on the high frequency and high voltage power supply, this paper studied the effects of different voltage amplitudes and power frequencies on the discharge characteristics and flow field distribution of the ring surface dielectric barrier discharge. The results show that the displacement current varies with the power supply voltage according to the sinusoidal law, but there is a positive bias. In the process of discharge, the discharge mode presents a transition from filament discharge to diffusion discharge with the increase of voltage amplitude. When the applied power frequency changes, the discharge becomes more diffuse. The electrical power consumption is not proportional to the square of the voltage amplitude, but shows a linear relationship with frequency approximately. The experimental results reveal that flow field perpendicular to the dielectric plate can be generated, and the airflow height can reach more than 90mm. Based on a three-dimensional model, the distribution of external electric field in the discharge region was calculated. The maximum of the external electric field happens near the inner edge of the high voltage electrode, and decreases along the ground electrode direction and the vertical dielectric plate direction. At the same relative point, the external electric field of the ring surface dielectric barrier discharge is higher than that of the strip surface dielectric barrier discharge. The difference of the external electric field between the two structures becomes larger near the edge of the high voltage electrode. The calculation results can explain some phenomena during the discharge.
李文慧, 姜慧, 杨帆, 刘海波, 周杨. 高频高压激励环形表面介质阻挡放电特性实验研究[J]. 电工技术学报, 2020, 35(16): 3539-3550.
Li Wenhui, Jiang Hui, Yang Fan, Liu Haibo, Zhou Yang. Experimental Study on Ring Surface Dielectric Barrier Discharge Characteristics of High Frequency and High Voltage Excitation. Transactions of China Electrotechnical Society, 2020, 35(16): 3539-3550.
[1] Przekora A, Pawlat J, Terebun P, et al.The effect of low temperature atmospheric nitrogen plasma on MC3T3-E1 preosteoblast proliferation and differenti- ation in vitro[J]. Journal of Physics D: Applied Physics, 2019, 52(27): 275401. [2] 孙昊, 张帅, 韩伟, 等. 纳秒脉冲火花放电高效转化甲烷的实验研究[J]. 电工技术学报, 2019, 34(4): 248-256. Sun Hao, Zhang Shuai, Han Wei, et al.An experi- mental investigation of nanosecond pulsed spark discharge for high-efficient methane conversion[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 248-256. [3] 肖雄, 王建国, 吴照国, 等. 等离子体作用后硅橡胶憎水性恢复及憎水迁移特性研究[J]. 电工技术学报, 2019, 34(增刊1): 433-439. Xiao Xiong, Wang Jianguo, Wu Zhaoguo, et al.Study on hydrophobicity recovery and hydrophobicity transfer of plasma treated silicone rubber[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(S1): 433-439. [4] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [5] Yang Kai, Rong Jian, Zhuang Yin, et al.Micro- structure and high PV wear behavior of novel amorphous Al2O3- YAG ceramic coating fabricated by atmospheric plasma spraying[J]. Journal of Thermal Spray Technology, 2019, 28(4): 803-825. [6] 高国强, 颜馨, 彭开晟, 等. 等离子体流动技术在列车减阻应用上的初步研究[J]. 电工技术学报, 2019, 34(4): 855-862. Gao Guoqiang, Yan Xin, Peng Kaisheng, et al.Primary research on drag reduction of train based on plasma flow[J]. Transactions of China Electro- technical Society, 2019, 34(4): 855-862. [7] Shang Kefeng, Wang Meiwei, Peng Bangfa, et al.Characterization of a novel volume-surface DBD reactor: discharge characteristics, ozone production and benzene degradation[J]. Journal of Physics D, 2020, 53(6): 065201. [8] Pavlovich M J, Chen Zhi, Sakiyama Y, et al.Effect of discharge parameters and surface characteristics on ambient-gas plasma disinfection[J]. Plasma Processes and Polymers, 2013, 10(1): 69-76. [9] Asakawa D, Saito N, Takahashi E, et al.Mass spectrometric characterization of the partial oxidation process of a gasoline surrogate induced by a dielectric barrier discharge[J]. Journal of Physical Chemistry A, 2020, 124(10): 2019-2028. [10] Anikin N B, Starikovskaia S M, Starikovskii A Y, et al.Polarity effect of applied pulse voltage on the development of uniform nanosecond gas break- down[J]. Journal of Physics D: Applied Physics, 2002, 35(21): 2785-2794. [11] HodamAhdavi, Farshad Sohbatzadeh. The role of non- linear body force in production of electric wind in an asymmetric surface dielectric barrier dis- charge[J]. Physica Scripta, 2019, 94(8): 085204. [12] Leonov S B, Adamovich I V, Soloviev V R.Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25(6): 063001. [13] He Chuan, Corke T C, Patel M P, et al.Plasma flaps and slats: an application of weakly ionized plasma actuators[J]. Journal of Aircraft, 2009, 46(3): 864-873. [14] Moreau E, Labergue A, Touchard G, et al.DC and pulsed surface corona discharge along a dielectric flat plate in air: electrical properties and discharge- induced ionic wind[J]. Journal of Advanced Oxidation Technologies, 2005, 8(2): 241-247. [15] Roupassov D V, Nikipelov A A, Nudnova M M, et al.Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185. [16] Liu Feng, Luo Shijun, Gao Chao, et al.Flow control over a conical forebody using duty-cycled plasma actuators[J]. AIAA Journal, 2008, 46(11): 2969-2973. [17] Wang Hongyu, Li Jun, Jin Di, et al.High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56. [18] Neretti G, Ricchiuto A C, Borghi C A, et al.Measure- ment of the charge distribution deposited by an annular plasma synthetic jet actuator over a target surface[J]. Journal of Physics D: Applied Physics, 2018, 51(32): 324004. [19] Dong Hao, Geng Xi, Shi Zhiwei, et al.On evolution of flow structures induced by nanosecond pulse discharge inside a plasma synthetic jet actuator[J]. Japanese Journal of Applied Physics, 2019, 58(2): 028002. [20] Pons J, Rabat H, Leroy A, et al.Experimental study of a surface DBD actuator supplied by an atypical nanosecond rising high-voltage pulse[J]. IEEE Transa- ctions on Plasma Science, 2014, 42(6): 1661-1668. [21] Roth J R, Rahel J, Dai Xin, et al.The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP™) reactors for surface treatment applications[J]. Journal of Physics D: Applied Physics, 2005, 38(4): 555-567. [22] 商克峰, 王浩, 岳帅, 等. 结构及供电电源对沿面介质阻挡放电装置放电特性及臭氧生成的影响[J]. 电工技术学报, 2017, 32(2): 53-60. Shang Kefeng, Wang Hao, Yue Shuai, et al.Effect of configuration and power supply on the discharge characteristics and ozone generation of a surface dielectric barrier discharge device[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 53-60. [23] Enloe C L, McLaughlin T E, Van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594. [24] Forte M, Moreau E, Touchard G, et al.Optimization of a dielectric barrier discharge actuator-application to airflow control[J]. Journal of Logic Language & Information, 2006, 21(1): 117-139. [25] Jiang Hui, Shao Tao, Zhang Cheng, et al.Two typical charge transportation characteristics in nanosecond- pulse surface dielectric barrier discharge[J]. IEEE Transa- ctions on Plasma Science, 2018, 46(10): 3524-3530. [26] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al.Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [27] 周杨, 姜慧, 章程, 等. 纳秒和微秒脉冲激励表面介质阻挡放电特性对比[J]. 高电压技术, 2014, 40(10): 3091-3097. Zhou Yang, Jiang Hui, Zhang Cheng, et al.Com- parison of discharge characteristics in surface dielectric barrier discharge driven by nanosecond and microsecond pulsed powers[J]. High Voltage Engin- eering, 2014, 40(10): 3091-3097. [28] Shao Tao, Jiang Hui, Zhang Cheng, et al.Time behaviour of discharge current in case of nanosecond- pulse surface dielectric barrier discharge[J]. EPL (Europhysics Letters), 2013, 101(4): 45002. [29] Jiang Hui, Shao Tao, Zhang Cheng, et al.Effect of grounded electrode's width on electrical characteri- stics of nanosecond-pulse surface DBD[C]//IEEE 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Shenzhen, 2013: 1030-1033. [30] Jiang Hui, Shao Tao, Zhang Cheng, et al.Experi- mental study of QV Lissajous figures in nanosecond- pulse surface discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1101-1111. [31] Yoshida K, Johnson M J, Go D B.Enhancement of thin air jets produced by ring-shaped dielectric barrier discharges using an auxiliary electrode[J]. Journal of Electrostatics, 2017, 87: 293-301. [32] Abbasi A A, Li Huaxing, Meng Xuanshi, et al.Effect of plasma leading edge tubercles on wing performance[C]//2018 AIAA Aerospace Sciences Meeting, Florida, 2018: 0679. [33] Zimmerman J W, Hristov G, Vahora M, et al.Scaling studies of cyclotronic plasma actuators for active flow control applications[C]//AIAA Scitech Forum, California, 2019: 0047. [34] 姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束, 2012, 24(3): 592-596. Jiang Hui, Zhang Cheng, Shao Tao, et al.Experi- mental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Particle Beams, 2012, 24(3): 592-596. [35] 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380. Shi Yaowei, Zhou Ruoyu, Cui Xinglei, et al.Experi- mental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380. [36] Forte M, Jolibois J, Pons J, et al.Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experi- ments in Fluids, 2007, 43(6): 917-928. [37] Cristofolini A, Neretti G, Roveda F, et al.Schlieren imaging in a dielectric barrier discharge actuator for airflow control[J]. Journal of Applied Physics, 2012, 111(3): 033302. [38] Zhou Yan, Xia Zhixun, Luo Zhenbing, et al.Effect of three- electrode plasma synthetic jet actuator on shock wave control[J]. Science China Technological Sciences, 2017, 60(1): 146-152. [39] Williamson J M, Trump D D, Bletzinger P, et al.Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge[J]. Journal of Physics D :Applied Physics, 2006, 39(20): 4400-4406.