1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology School of Electrical Engineering Chongqing University Chongqing 400044 China; 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 3. Key Laboratory of Power Electronics and Electric Drive Chinese Academy of Sciences Beijing 100190 China
Abstract:Electrode gap is an important geometric parameter in surface dielectric barrier discharge (SDBD). Based on experimental studies and simulations, the influence of electrode gaps on the distribution characteristics of nanosecond-pulsed SDBD is studied, and the mechanisms of two plasma distributions (quasi-diffuse mode and separated-channel mode) are analyzed theoretically. Experimental results show that electrode gap is the key geometric parameter accounting for the two typical discharge characteristics and different plasma distributions. Simulations of external electric fields of discharge areas present that the direct reasons of two plasma distributions are the morphological and numerical differences of external electric fields at different gaps. Combined with gas discharge theory, it is deduced that the quasi-diffuse distribution is due to that the streamers forward-expanding and spanwise-exciting ionization act simultaneously, while the separated-channel distribution is mainly because the streamer forward expanding is dominant and span-wide ionization is relatively weak. The main mechanisms are the match of the changing rate of electric field with time and space, and the expanding velocity of streamer channels.
[1] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学 力学 天文学 2011, 41(7): 801-815. Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA Physica, Mechanica & Astrono- mica, 2011, 41(7): 801-815. [2] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015. [3] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [4] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmo- spheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [5] Kotsonis M. Diagnostics for characterisation of plasma actuators[J]. Measurement Science Technology, 2015, 26(9): 092001. [6] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. Wu Yun, Li Yinghong. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astro- nautica Sinica, 2015, 36(2): 381-405. [7] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038. Wu Yun, Li Yinghong. Progress in research of plasma-assisted flow control, ignition and com- bustion[J]. High Voltage Engineering, 2014, 40(7): 2024-2038. [8] Odic E, Dhainaut M, Petit M, et al. Approach of the physical and chemical specific properties of pulsed surface dielectric barrier discharges in air at atom- spheric pressure[J]. Journal of Advanced Oxidation Technologies, 2003, 6(1): 41-47. [9] Abdelaziz A A, Seto T, Abdel-Salam M, et al. Influence of applied voltage waveforms on the performance of surface dielectric barrier discharge reactor for decomposition of naphthalene[J]. Journal of Physics D: Applied Physics, 2015, 48(19): 195201. [10] 李杰, 王昭博, 姜楠, 等. 沿面介质阻挡放电的低压电极配置方法[J]. 高电压技术, 2015, 41(9): 2844-2849. Li Jie, Wang Zhaobo, Jiang Nan, et al. Configuration method on ground electrode of surface dielectric barrier discharge[J]. High Voltage Engineering, 2015, 41(9): 2844-2849. [11] 赵光银, 梁华, 李应红, 等. 表面介质阻挡纳秒脉冲放电能量特性和诱导流动特性研究[J]. 中国科学: 技术科学, 2015, 45(11): 1195-1206. Zhao Guangyin, Liang Hua, Li Yinghong ,et al. Study of electrical characterization and induced flow by nanosecond pulsed dielectric barrier discharge actuator[J]. SCIENTIA SINICA Technologic, 2015, 45(11): 1195-1206. [12] 袁均祥, 杨兰均, 张乔根, 等. 电极参数对尖–板电极空气放电离子风特性的影响[J]. 电工技术学报, 2010, 25(1): 24-31. Yuan Junxiang, Yang Lanjun, Zhang Qiaogen, et al. Ionic wind characteristic of tine-plat affected by electrode parameter from atmosphere discharge[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 24-31. [13] Ndong A C A, Zouzou N, Benard N, et al. Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage[J]. Journal of Electrostatics, 2013, 71(3): 246-253. [14] Dawson R A, Little J. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. Journal Applied Physics, 2014, 115(4): 043306. [15] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity-application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928. [16] 姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束, 2012, 24(3): 592-596. Jiang Hui, Zhang Cheng, Shao Tao, et al. Experi- mental study on characteristics of nanosecond-pulse surface dielectric barrier discharge[J]. High Power Laser and Partical Beams, 2012, 24(3): 592-596. [17] 姜慧, 邵涛, 车学科, 等. 纳秒脉冲表面放电等离子体影响因素的实验研究[J]. 高电压技术, 2012, 38(7): 1704-1710. Jiang Hui, Shao Tao, Che Xueke, et al. Experimental study on the factors influencing nanosecond-pulsed surface discharge plasma[J]. High Voltage Engin- eering, 2012, 38(7): 1704-1710. [18] 吴云. 等离子体气动激励及其扩大压气机稳定性的原理研究[D]. 西安: 空军工程大学, 2008. [19] 车学科, 聂万胜, 丰松江, 等. 介质阻隔面放电的结构参数[J]. 高电压技术, 2009, 35(9): 2213-2219. Che Xueke, Nie Wansheng, Feng Songjiang, et al. Geometrical parameter of dielectric barrier surface discharge[J]. High Voltage Engineering, 2009, 35(9): 2213-2219. [20] Zhang C, Shao T, Niu Z, et al. Diffuse and fila- mentary discharges in open air driven by repetitive high-voltage nanosecond pulses[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2208-2209. [21] Shao T, Zhang C, Yu Y, et al. Temporal evolution of nanosecond-pulse dielectric barrier discharges in open air[J]. Europhys Letters, 2012, 97(5): 504-514. [22] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al. Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [23] Jiang H, Shao T, Zhang C, et al. Experimental study of Q - V Lissajous figures in nanosecond-pulse surface discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1101-1111. [24] Shao T, Jiang H, Zhang C, et al. Time behaviour of discharge current in case of nanosecond-pulse surface dielectric barrier discharge[J]. Europhys Letters, 2013, 101(4): 45002-45007. [25] Gibalov V I, Pietsch G J. The development of dielectric barrier discharges in gas gaps and on surfaces[J]. Journal of Physics D: Applied Physics, 2000, 33(20): 2618-2636. [26] Dedrick J, Boswell R W, Rabat H, et al. Control of diffuse and filamentary modes in an RF asymmetric surface barrier discharge in atmospheric-pressure argon[J]. Plasma Sources Science & Technology, 2012, 21(5): 1020-1027. [27] 徐学基. 气体放电物理[M]. 上海: 复旦大学出版社, 1996. [28] 王新新, 李成榕. 大气压氮气介质阻挡均匀放电[J]. 高电压技术, 2011, 37(6): 1405-1415. Wang Xinxin, Li Chengrong. Review of homogenous dielectric barrier discharge in Nitrogen at atmospheric perssure[J]. High Voltage Engineering, 2011, 37(6): 1405-1415. [29] 罗海云, 冉俊霞, 王新新. 大气压空气介质阻挡汤森放电[J]. 高电压技术, 2012, 38(7): 1661-1666. Luo Haiyun, Ran Junxia, Wang Xinxin. Townsend dielectric barrier discharge in atmospheric pressure air[J]. High Voltage Engineering, 2012, 38(7): 1661- 1666. [30] Jidenko N, Petit M, Borra J P. Electrical characte- rization of microdischarges produced by dielectric barrier discharge in dry air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2006, 39(2): 281-293. [31] Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharges[J]. Journal of Physics D: Applied Physics, 2005, 38(2): R1-R24. [32] Akishev Y, Aponin G, Balakirev A, et al. DBD surface streamer expansion described using nonlinear diffusion of the electric potential over the barrier[J]. Journal of Physics D: Applied Physics, 2013, 46(46): 464014.