An Experimental Investigation of Nanosecond Pulsed Spark Discharge for High-Efficient Methane Conversion
Sun Hao1, 2, Zhang Shuai1, Han Wei3, Gao Yuan1, Wang Ruixue1, Shao Tao1, 2
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering, Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. Research Institute of Petroleum Processing SINOPEC Beijing 100083 China
Abstract:The spark discharge, in which the gas temperature is between arc discharge and dielectric barrier discharge, has a potential for industrial methane conversion due to its high conversion rate, high conversion efficiency and low requirements. Nano-second pulse power source is able to enhance spark performance by short duration and rapid rising time, making plasma more efficient and colder. In this paper, an overall study of nanosecond pulsed spark discharge in methane has been conducted. The results show that the conversion rate of methane is 60%. The selectivity and yield of hydrogen is 44.4% and 26.6%, while those of acetylene are 28.8% and 16.8%, respectively. The total energy efficiency and hydrogen production efficiency are calculated as high as 33.9% and 23% at SEI of 170kJ/mol. Optical emission spectrum (OES) at range of 350~700nm has been recorded, in which H Balmer profiles (such as Hα, Hβ, Hγ), CH, C+ and C2 are detected. The electron density has been estimated about 1017cm-3 by the Stark effect of Hα. The evolutions of Hα, CH and C2 have been acquired by ICCD and monochromator. The electrons density decreases along with reaction time. C+ shows up as long as pulses are exerted, while CH starts to be generated at the end of pulse, which indicates C2H2 comes from recombination of CH that derives from H and C+.
[1] 叶张煌, 王安建, 闫强, 等. 全球天然气格局分析和我国的发展战略[J]. 地球学报, 2017, 38(1): 17-24. Ye Zhanghuang, Wang Anjian, Yan Qiang, et al.Global pattern analysis of natural gas and the development strategy in China[J]. Power System Technology, 2017, 38(1): 17-24. [2] 王南, 裴玲, 雷丹凤, 等. 中国非常规天然气资源分布及开发现状[J]. 油气地质与采收率, 2015, 22(1): 26-31. Wang Nan, Pei Ling, Lei Danfeng, et al.Analysis of unconventional gas resources distribution and development status in China[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 26-31. [3] 顾佳明, 黄晓媛, 程党国, 等. 热等离子体裂解煤制乙炔反应器研究进展[J]. 化工进展, 2013, 32(增刊1): 6-12. Gu Jiaming, Huang Xiaoyuan, Cheng Dangguo, et al.Process in thermal plasma reactor used for coal pyrolysis to acetylene[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 6-12. [4] 苏宝根, 房建威, 闻光东, 等. 热等离子体裂解低碳烷烃制乙炔的研究进展[J]. 化学反应工程与工艺, 2013, 29(3): 230-237. Su Baogen, Fang Jianwei, Wen Guangdong, et al.Development and process of pyrolysis of light alkanes to acetylene by thermal plasma[J]. Chemical Reaction Engineering and Technology, 2013, 29(3): 230-237. [5] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.Review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [6] Scapinello M, Delikonstantis E, Stefanidis G D.The panorama of plasma-assisted non-oxidative methane reforming[J]. Chemical Engineering and Processing, 2017, 117(4): 120-140. [7] 陈琳. 低温等离子体-催化选择性转化CH4研究进展[J]. 天然气化工: C1化学与化工, 2011, 36(2): 70-74. Chen Lin.Advance in the research on methane selective conversion by cold plasma and catalysis[J]. Natural Gas Chemical Industry, 2011, 36(2): 70-74. [8] Tu Xin, Whitehead J C.Plasma-catalytic dry refor- ming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature[J]. Applied Catalysis B Environmental, 2012, 125(33): 439-448. [9] 张凯, 王瑞雪, 韩伟. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15. Zhang Kai, Wang Ruixue, Han Wei.Progress of heavy oil processing by plasma technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15. [10] 杨宽辉, 王保伟, 许根慧. 介质阻挡放电等离子体特性及其在化工中的应用[J]. 化工学报, 2007, 58(7): 1609-1618. Yang Kuanhui, Wang Baowei, Xu Genhui.Dielectric- barrier discharge plasma characteristics and its application in chemical engineering[J]. CIESC Journal, 2007, 58(7): 1609-1618. [11] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [12] 朱爱民, 宫为民, 张秀玲, 等. 脉冲电晕等离子体应用于CH4偶联的探索研究[J]. 天然气化工: C1化学与化工, 1997, 22(2): 1-5. Zhu Aimin, Gong Weimin, Zhang Xiuling, et al.Investigation on pulsed corona induced plasma for coupling of methane[J]. Natural Gas Chemical Industry C1 Chemistry and Technology, 1997, 22(2): 1-5. [13] 丁天英, 刘景林, 朱爱民. 火花放电电极结构及其等离子体反应器[J]. 核聚变与等离子体物理, 2014, 34(3): 282-288. Ding Tianying, Liu Jinglin, Zhu Aimin, et al.Electrode configuration and plasma reactor of spark discharge[J]. Nuclear Fusion and Plasma Physics, 2014, 34(3): 282-288. [14] 张浩, 朱凤森, 李晓东, 等. 旋转滑动弧氩等离子体裂解甲烷制氢[J]. 燃料化学学报, 2016, 44(2): 192-200. Zhang Hao, Zhu Fengshen, Li Xiaodong, et al.Rotating gliding arc plasma assisted hydrogen production from methane decomposition in Argon[J]. Journal of Fuel Chemistry and Technology, 2016, 44(2): 192-200. [15] 张浩, 朱凤森, 李晓东, 等. 滑动弧放电等离子体重整甲烷关键技术分析[J]. 高电压技术, 2015, 41(9): 2930-2942. Zhang Hao, Zhu Fengshen, Li Xiaodong, et al.Analysis of critical technology for gliding arc discharge plasma assisted methane reforming[J]. High Voltage Engineering, 2015, 41(9): 2930-2942. [16] Patino P, Perez Y, Caetano M.Coupling and reforming of methane by means of low pressure radio-frequency plasmas[J]. Fuel, 2005, 84(16): 2008-2014. [17] Heintze M, Magureanu M.Methane conversion into acetylene in a microwave plasma: optimization of the operating parameters[J]. Journal of Applied Physics, 2002, 92(5): 2276-2283. [18] Fincke J R, Anderson R P, Hyde T, et al.Plasma thermal conversion of methane to acetylene[J]. Plasma Chemistry Plasma Processing, 2002, 22(1): 107-138. [19] Xu Chao, Tu Xin.Plasma-assisted methane con- version in an atmospheric pressure dielectric barrier discharge reactor[J]. Journal of Energy Chemistry, 2013, 22(3): 420-425. [20] Kasinathan P, Park S, Choi W C, et al.Plasma- enhanced methane direct conversion over particle- size adjusted MOx/Al2O3 (M=Ti and Mg) catalysts[J]. Plasma Chemistry Plasma Processing, 2014, 34(6): 1317-1330. [21] Zhu Aimin, Gong Weimin, Zhang Xiuling, et al.Coupling of methane under pulse corona plasma (I)— In the absence of oxygen[J]. Science in China Series B, 2000, 43(2): 208-214. [22] Yao Shuiliang, Suzuki E, Meng N, et al.A high- efficiency reactor for the pulsed plasma conversion of methane[J]. Plasma Chemistry Plasma Processing, 2002, 22(2): 225-237. [23] Rueangjitt N, Sreethawong T, Chavadej S.Non- oxidative reforming of methane in a mini-gliding arc discharge reactor: effects of feed methane concentration, feed flow rate, electrode gap distance, residence time, and catalyst distance[J]. Plasma Chemistry Plasma Processing, 2011, 31(2): 517-534. [24] Hsieh L T, Lee W J, Chen C Y, et al.Conver- tingmethane by using an RF plasma reactor[J]. Plasma Chemistry and Plasma Processing, 1998, 18(2): 215-229. [25] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. Li Heping, Yu Daren, Sun Wenting, et al.State of the art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. [26] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [27] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Minzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasma[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [28] Lotfalipour R, Ghorbanzadeh A M, Mahdian A.Methane conversion by repetitive nanosecond pulsed plasma[J]. Journal of Physics D: Applied Physics, 2014, 47(36): 5201-5217. [29] Kado S, Urasaki K, Sekine Y, et al.Reaction mechanism of methane activation using non- equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18): 2291-2297. [30] Kado S, Sekine Y, Nozaki T, et al.Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion[J]. Catalysis Today, 2004, 89(1): 47-55. [31] 何方方, 李娟, 印永祥, 等. 冷等离子体裂解甲烷制C2烃动力学分析及模拟[J]. 天然气化工, 2003, 28(6): 52-57. He Fangfang, Li Juan, Yin Yongxiang, et al.Kinetics analysis and simulation involved in cracking and conversion of methane to C2 hydrocarbons in cold plasma[J]. Natural Gas Chemical Industry, 2003, 28(6): 52-57. [32] 王望达, 徐勇, 张家良, 等. 常压辉光等离子体催化CH4转化制C2烃在线诊断研究[J]. 光谱学与光谱分析, 2010, 30(10): 2812-2815. Wang Wangda, Xu Yong, Zhang Jialiang, et al.Online diagnosis of the conversion of methane to C2 hydrocarbons under glow discharge plasma at atmospheric pressure[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2812-2815. [33] Nikiforov A Y, Chen L, Gonzalez M A, et al.Electron density measurement in atmospheric pressure plasma jets: Stark broadening of hydrogenated and non- hydrogenated lines[J]. Plasma Sources Science and Technology, 2015, 24(3): 034001. [34] Helbig V, Nick K P.Investigation of the Stark broadening of Balmer beta[J]. Journal of Physics B: Atomic and Molecular Physics, 1981, 14(19): 3573. [35] Mills R L, Ray P C, Dhandapani B, et al.Comparison of excessive Balmer alpha line broadening of glow discharge and microwave hydrogen plasmas with certain catalysts[J]. Journal of Applied Physics, 2002, 92(12): 7008-7021. [36] M Rio J, Viktor M, Karol H, et al. Measurement of the electron density in transient spark discharge[J]. Plasma Sources Science and Technology, 2014, 23(6): 065016. [37] Xiong Qing, Nikiforov A Y, Lu Xinpei, et al.High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system[J]. Journal of Physics D: Applied Physics, 2010, 43(41): 415201. [38] Griem H R, Borr W L.Spectral line broadening by plasmas[J]. IEEE Transactions on Plasma Science, 1975, 3(4): 227. [39] Gigosos M A, Gonz M Á, Carde V N.Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1489-1504.