Experimental Investigation on Spectral Characteristics of Pantograph-Catenary Arc Plasma
Hu Yi1, Wei Wenfu1, Lei Dong2, Gao Guoqiang1, Wu Guangning1
1. School of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China; 2. Standards & Metrology Research Institute China Academy of Railway Sciences Beijing 100081 China;
Abstract:Pantograph-catenary arc plasma, with high temperature and high energy density, can severely threaten the electrical contact performance of pantograph-catenary system in high speed railway. In this paper, pantograph-catenary arc experiments were conducted based on arc simulative platform in laboratory. The characteristic of pantograph-catenary arc plasma was studied by spectral diagnosis method, and then the primary characteristic lines were recognized and classified. The excitation temperature, rotational temperature, vibrational temperature and electron density were also calculated, respectively. Meanwhile, the influence of input current on excitation temperature and electron density was analyzed. The results show that abundant copper, iron and CN B2∑+→X2∑+ characteristic lines would occur due to the intense erosion effects of pantograph-catenary arc plasma on copper wire and metal impregnated strips. In addition, it is found that the excitation temperature of pantograph-catenary arc plasma increases with the increase of current based on Boltzmann plot. The rotational temperature and vibrational temperature reach up to 6 800K and 9 000K respectively when the current is 30A, according to the theoretical calculation with the spectral line of CN B2∑+→X2∑+. Furthermore, the broadening mechanism of characteristic lines was discussed, and by Cu I 521.82nm characteristic line the increasing tendency of electron density with the input current was analyzed.
[1] 吴广宁, 古圳, 高国强, 等. 弓网电弧形态特性试验研究[J]. 高电压技术, 2015, 41(11): 3532-3537. Wu Guangning, Gu Zhen, Gao Guoqiang, et al. Experimental research on morphological characteri- stics of pantograph-catenary arc[J]. High Voltage Engineering, 2015, 41(11): 3532-3537. [2] 郭凤仪, 王喜利, 王智勇, 等. 弓网电弧辐射电场噪声实验研究[J]. 电工技术学报, 2015, 30(14): 220-225. Guo Fengyi, Wang Xili, Wang Zhiyong, et al. Research on radiated electric field noise of panto- graph arc[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 220-225. [3] 杨柳林, 李德奎, 陈延明, 等. 基于RTDS的电弧接地故障自定义建模及仿真分析[J]. 电力系统保护与控制, 2016, 44(16): 138-142. Yang Liulin, Li Dekui, Chen Yanming, et al. User defined modeling and simulation of arc grounding fault based on RTDS[J]. Power System Protection and Control, 2016, 44(16): 138-142. [4] 陈博博, 屈卫锋, 杨宏宇, 等. 小电流接地系统单相接地综合电弧模型与选线方法的研究[J]. 电力系统保护与控制, 2016, 44(16): 1-7. Chen Bobo, Qu Weifeng, Yang Hongyu, et al. Research on single phase grounding arc model and line selection for neutral ineffectively grounding system[J]. Power System Protection and Control, 2016, 44(16): 1-7. [5] 王万岗, 吴广宁, 高国强, 等. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4): 22-27. Wang Wangang, Wu Guangning, Gao Guoqiang, et al. The pantograph-catenary arc test system for high- speed railways[J]. Journal of the China Railway Society, 2012, 34(4): 22-27. [6] 吴积钦, 钱清泉. 弓网系统电弧侵蚀接触线时的热分析[J]. 铁道学报, 2008, 30(3): 31-34. Wu Jiqin, Qian Qingquan. Thermal analysis of arc erosion of contact wire of the pantograph & catenary system[J]. Journal of the China Railway Society, 2008, 30(3): 31-34. [7] Surajit M, Dierk B, Thorsten S, et al. Pantograph arcing in electrified railways—mechanism and influence of various parameters—part II: with AC traction power supply[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 1940-1950. [8] Surajit M, Dierk B, Anders L, et al. Understanding pantograph arcing in electrified railways-influence of various parameters[C]//IEEE International Sympo- sium on Electromagnetic Compatibility, 2008: 1-6. [9] Morin L, Jemaa N B, Jeannot D, et al. Contacts materials performances under break arc in automotive applications[J]. IEEE Transactions on Components and Packaging Technologies, 2000, 23(2): 367-375. [10] 王万岗. 高速铁路弓网电弧动态特性研究[D]. 成都: 西南交通大学, 2013. [11] 斯红, 华学明, 张旺, 等. 基于Boltzmann光谱法的焊接电弧温度场测量计算[J]. 光谱学与光谱分析, 2012, 32(9): 2311-2313. Si Hong, Hua Xueming, Zhang Wang, et al. Welding arc temperature field measurements based on Boltzmann spectrometry[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2311-2313. [12] 杨昊, 张乔根, 庞磊, 等. 染污绝缘表面交流电弧发射光谱及等离子体特性研究[J]. 中国电机工程学报, 2015, 35(18): 4808-4816. Yang Hao, Zhang Qiaogen, Pang Lei, et al. Study on AC arc discharge characteristics over the polluted insulation surface using optical emission spectros- copy[J]. Proceedings of the CSEE, 2015, 35(18): 4808-4816. [13] 彭志敏, 丁艳军, 杨乾锁, 等. 基于OH自由基A 2 ∑ + →X 2 ∏r电子带系发射光谱的温度测量技术[J]. 物理学报, 2011, 60(5): 250-259. Peng Zhimin, Ding Yanjun, Yang Qiansuo, et al. Emission spectra of OH radical (A 2 ∑ + →X 2 ∏r) and its application on high temperature gas[J]. Acta Physica Sinica, 2011, 60(5): 250-259. [14] 屠昕, 严建华, 马增益, 等. 基于N 2+ (B 2 ∑ + u→X 2 ∑ + g) 的电弧等离子体振动温度和转动温度测量[J]. 光谱学与光谱分析, 2006, 26(12): 2161-2165. Tu Xin, Yan Jianhua, Ma Zengyi, et al. Measurement of rotational and vibrational temperatures in arc plasma based on the first negative system of N 2+ (B 2 ∑ + u→X 2 ∑ + g)[J]. Spectroscopy and Spectral Analysis, 2006, 26(12): 2161-2165. [15] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(11): 229-238. [16] 王其平. 电器电弧理论[M]. 北京: 机械工业出版社, 1982. [17] Kapetanovic M, Knol P, Van der Sluis L. Analysis of cooling power and network interaction of a switching- arc in an SF 6 high-voltage circuit-breaker[C]//The Colloquium of CIGRE SC 13, Sarajevo, Yugoslavia, 1989. [18] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [19] 董华军, 廖敏夫, 邹积岩, 等. 基于CCD真空开关电弧等离子体参数诊断方法[J]. 电工技术学报, 2007, 22(6): 65-68. Dong Huajun, Liao Minfu, Zou Jiyan, et al. Methods of diagnosing the plasma parameters in vacuum switching arcs based on CCD[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 65-68. [20] 吴蓉, 李燕, 朱顺官, 等. 等离子体电子温度的发射光谱法诊断[J]. 光谱学与光谱分析, 2008, 28(4): 731-735. Wu Rong, Li Yan, Zhu Shunguan, et al. Emission spectroscopy diagnostics of plasma electron yemper- ature[J]. Spectroscopy and Spectral Analysis, 2008, 28(4): 731-735. [21] Babich I L, Boretskij V F, Veklich A N, et al. Spectroscopic data and Stark broadening of Cu I and Ag I spectral lines: selection and analysis[J]. Advances in Space Research, 2014, 54(7): 1254-1263. [22] Magesh Thiyagarajan, John Scharer. Experimental investigation of ultraviolet laser induced plasma density and temper- ature evolution in air[J]. Journal of Applied Physics, 2008, 104(1): 013303 (1-12). [23] Kurosawa K, Sugita S, Fujita K, et al. Rotational- temperature measurements of chemically reacting CN using band-tail spectra[J]. Journal of Thermophysics & Heat Transfer, 2009, 23(3): 463-472. [24] 梁卓, 罗海云, 王新新, 等. 气流对氮气介质阻挡放电气体温度及放电模式的影响[J]. 物理学报, 2010, 59(12): 8739-8746. Liang Zhuo, Luo Haiyun, Wang Xinxin, et al. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure[J]. Acta Physica Sinica, 2010, 59(12): 8739-8746. [25] Laux C O, Spence T G, Kruger C H, et al. Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science & Technology, 2003, 12(2): 125-138. [26] Staack D, Farouk B, Gutsol A, et al. Characterization of a DC atmospheric pressure normal glow discharge[J]. Plasma Sources Science & Technology, 2005, 14(4): 700-711. [27] 赵文华, 唐皇哉, 沈岩, 等. 谱线强度法所测得温度的物理意义[J]. 光谱学与光谱分析, 2007, 27(11): 2145-2149. Zhao Wenhua, Tang Huangzai, Shen Yan, et al. Physical meaning of temperature measured by spectral line intensity method[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2145-2149. [28] Iwasaki M, Inui H, Matsudaira Y, et al. Nonequili- brium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning[J]. Applied Physics Letters, 2008, 92(8): 081503. [29] 唐晓闩, 李春燕, 朱光来, 等. 激光诱导Al等离子体中电子密度和温度的实验研究[J]. 中国激光, 2004, 31(6): 687-692. Tang Xiaoshuan, Li Chunyan, Zhu Guanglai, et al. Experimental investigation on the electron density and electron temperature of laser-induced Al plasmas[J]. Chinese Journal of Lasers, 2004, 31(6): 687-692. [30] Hofmann S, Van Gessel A F H, Verreycken T, et al. Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets[J]. Plasma Sources Science and Technology, 2011, 20(6): 065010(1-12). [31] Rautian S G, Sobel'man I I. The effect of collisions on the doppler broadening of spectral lines[J]. Soviet Physics Uspekhi, 1967, 9(5): 701-716. [32] 潘成刚, 华学明, 张旺, 等. 傅里叶变换法计算焊接电弧光谱Stark展宽研究[J]. 光谱学与光谱分析, 2012, 32(7): 1739-1743. Pan Chenggang, Hua Xueming, Zhang Wang, et al. Calculating the stark broadening of welding arc spectra by Fourier transform method[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1739-1743. [33] Konjević N, Wiese W L. Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms[J]. Journal of Physical and Chemical Refer- ence Data, 1990, 19(6): 1307-1385.