Simulation of Characteristics of Electrons During a Pulse Cycle in Bar-Plate DC Negative Corona Discharge
Liao Ruijin1, Wu Feifei1, 2, Liu Kanglin1, Wang Ke2, Gao Jun1, Zuo Zhiping1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. State Grid Tianfu Electric Power Supply Company Chengdu 610000 China; 3. China Electric Power Research Institute Beijing 100192 China
Abstract:In order to explore the characteristics of electron in DC negative corona discharge, microscopic process of negative corona discharge in air is simulated in this paper. The numerical computation is established with a bar-plate electrode configuration with an inter-electrode gap of 3.3 mm, the negative DC voltage applied to the bar is 5.0 kV, the pressure in air discharge is fixed at 1.0 atm, and the gas temperature is assumed to be a constant(300K). And the solution of the microscopic mechanism for corona discharge is to convert the electron conservation equation, electron mean energy conservation, heavy species multi-component diffusion transport equation, and the Poisson’s equation into the appropriate system of partial differential equations, which are then normalized and solved using discrete numerical difference equations. Using individual discharge current waveform, the effectiveness of this developed model is validated by experimental results. Based on this simulation model, characteristics of electrons at 6 representative time points during a pulse are discussed emphatically. The obtained results show that, the maximum number of electron temperature appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density in the cathode sheath region almost keeps zero, however, it increase sharply to its maximum value at the cathode sheath outer layer. The electron density distribution move towards the anode, and the density of space increase gradually with time progresses. Among all reactions, R1 and R2 which are electron collision reaction associated respectively with N2 and O2 regarded as the main process of electron proliferation, besides, reaction rates of R1 and R2 almost keep the same curve. R17 is a recombination reaction of N2, N2+ and e, which play a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air. The obtained results will provide valuable insights into the physical mechanism of positive corona discharge in air.
廖瑞金, 伍飞飞, 刘康淋, 汪可, 高竣, 左志平. 棒-板电极直流负电晕放电脉冲过程中子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329.
Liao Ruijin, Wu Feifei, Liu Kanglin, Wang Ke, Gao Jun, Zuo Zhiping. Simulation of Characteristics of Electrons During a Pulse Cycle in Bar-Plate DC Negative Corona Discharge. Transactions of China Electrotechnical Society, 2015, 30(10): 319-329.
[1] 欧阳科文, 崔翔, 焦重庆, 等. 一种分裂导线直流电晕起晕电压的计算方法[J]. 电工技术学报, 2013, 28(3): 177-182. Ouyang Kewen, Cui Xiang, Jiao Chongqing, et al. A novel calculation method for dc corona onset voltage of bundle conductors[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 177-182. [2] 刘云鹏, 朱雷, 律方成, 等. 特高压电晕笼直流分裂导线正极性电晕起始特性分析[J]. 电工技术学报, 2013, 28(1): 73-79. Liu Yunpeng, Zhu Lei, Lü Fangcheng, et al. Analysis of the positive corona onset characteristic of the bundle conductors in the UHV corona cage[J]. Transac- tions of China Electrotechnical Society, 2013, 28(1): 73-79. [3] Feng Fada, Ye Ling, Liu Ji, et al. Non-thermal plasma generation by using back corona discharge on catalyst [J]. Journal of Electrostatics, 2013, 71(3): 179-184. [4] 舒印彪, 张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报, 2007, 27(31): 1-6. Shu Yinbiao, Zhang Wenliang. Research of key technologies for UHV transmission[J]. Proceedings of the CSEE, 2007, 27(31): 1-6. [5] 廖敏夫, 段雄英, 李劲. 同轴电极脉冲电晕放电形态的研究[J]. 电工技术学报, 2002, 17(4): 26-30. Liao Minfu, Duan Xiongying, Li Jin. Research on modality of pulsed corona plasma in a coaxial electrode system[J]. Transactions of China Electrotech- nical Society, 2002, 17(4): 26-30. [6] 刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005. [7] Lin L, Wu B, Zhang P, et al. Analysis of instabilities in non-equilibrium plasmas[J]. Chinese Physics Letters, 2004, 21(10): 1993-1996. [8] Stoffels E, Flikweert A J, Stoffels W W, et al. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of(bio)materials[J]. Plasma Sources Science & Technology, 2002, 11(4): 383-388. [9] 胡征. 等离子体化学基础[J]. 化工时刊, 2000, 14(7): 46-49. Hu Zheng. Plasma chemical basis[J]. Chemical Industry Times, 2000, 14(7): 46-49. [10] 徐学基, 诸定昌. 空气放电物理[M]. 上海: 复旦大学出版社. 1996. [11] 伍飞飞, 廖瑞金, 杨丽君, 等. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析[J]. 物理学报, 2013, 62(11): 348-357. Wu Feifei, Liao Ruijin, Yang Lijun, et al. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge[J]. Acta Physica Sinica, 2013, 62(11): 348-357. [12] Sommerer T J, Kushner M J. Numerical investigation of the kinetics and chemistry of rf glow-discharge plasmas sustained in He, N 2 , O 2 , He/N 2 /O 2 , He/ CF 4 /O 2 , and SiH 4 /NH 3 using a monte-carlo-fluid hybrid model[J]. Journal of Applied Physics, 1992, 71(4): 1654-1673. [13] Fofana I, Beroual A, Rakotonandrasana J H. Applica- tion of dynamic models to predict switching impulse withstand voltages of long air gaps[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation, 2013, 20(1): 89-97. [14] Brau Fabian, Luque Alejandro, Davidovitch Benny, et al. Moving-boundary approximation for curved streamer ionization fronts: Numerical tests[J]. Physical Review E, 2009, 79(6): 066211. [15] Luque A, Ebert U. Electron density fluctuations accelerate the branching of positive streamer discharges in air[J]. Physical Review E, 2011, 84(4): 046411. [16] Nijdam S, Miermans K, Van Veldhuizen E M, et al. A peculiar streamer morphology created by a complex voltage pulse[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2216-2217. [17] Davies A J, Davies C S, Evans C J. Computer simula- tion of rapidly developing gaseous discharges[C]. Proceedings of the Institution of Electrical Engineers, London, 1971: 816-823. [18] D'agostino Riccardo, Favia Pietro, Oehr Christian, et al. Five years of excellence in plasma science[J]. Plasma Processes and Polymers, 2009, 6(1): 7-10. [19] Nahorny J, Ferreira C M, Gordiets B, et al. Experi- mental and theoretical investigation of a N 2 -O 2 DC flowing glow-discharge[J]. Journal of Physics D- Applied Physics, 1995, 28(4): 738-747. [20] Pancheshnyi S V, Starikovskii A Y. Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage[J]. Journal of Physics D-Applied Physics, 2003, 36(21): 2683- 2691. [21] Liu Xinghua, He Wei, Yang Fan, et al. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure [J]. Chinese Physics B, 2012, 21(7): 075201 [22] Antao Dion S, Staack David A, Fridman Alexander, et al. Atmospheric pressure dc corona discharges: opera- ting regimes and potential applications[J]. Plasma Sources Science & Technology, 2009, 18(3): [23] 廖瑞金, 伍飞飞, 刘兴华, 等. 大气压直流正电晕放电暂态空间电荷分布仿真研究[J]. 物理学报, 2012, 61(24): 370-380. Liao Ruijin, Wu Feifei, Liu Xinghua, et al. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air[J]. Acta Physica Sinica, 2012, 61(24): 370-380. [24] Liao Ruijin, Wu Feifei, Yang Lijun. Investigation on microcosmic characteristics of trichel pulse in bar- plate dc negative corona discharge based on a novel simulation model[J]. International Review of Electrical Engineering, 8(8): 504-513. [25] Georghiou G E, Papadakis A P, Morrow R, et al. Numerical modelling of atmospheric pressure gas discharges leading to plasma production[J]. Journal of Physics D-Applied Physics, 2005, 38(20): R303-R328. [26] Ebert Ute, Sentman Davis D. Streamers, sprites, leaders, lightning: from micro- to macroscales[J]. Journal of Physics D-Applied Physics, 2008, 41(23): 230301. [27] Liu Yang, Zissis Georges, Chen Yu Ming. Effect of non-Maxwellian electron energy distribution functions on the simulation of an inductively coupled Ar-Hg discharge[J]. Plasma Sources Science & Technology, 2013, 22(3): 035002. [28] Abdel-Fattah E, Sugai H. Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas[J]. Physics of Plasmas, 2013, 20(2): 023501. [29] Pancheshnyi S, Nudnova M, Starikovskii A. Develo- pment of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation[J]. Physical Review E, 2005, 71(1): 016407. [30] Wu Feifei, Liao Ruijin, Liu Xinghua, et al. Numerical simulation of DC positive corona discharge under atmospheric environment[C]. International Conference on High Voltage Engineering and Application, Shanghai, 2012: 523-527. [31] 刘兴华. 基于流体-化学反应混合模型的空气放电机理及特性研究[D]. 重庆: 重庆大学, 2012. [32] Li Chao, Ebert Ute, Hundsdorfer Willem. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. planar fronts[J]. Journal of Computational Physics, 2010, 229(1): 200- 220. [33] Hagelaar G J M., Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science & Technology, 2005, 14(4): 722-733. [34] 刘兴华, 何为, 杨帆, 等. 空气放电中电子输运参数的计算与分析[J]. 高电压技术, 2011, 37(7): 1614-1619. Liy Xinghua, He Wei, Yang Fan, et al. Simulation and analysis of electron transport paramenters in air discharge[J]. High Voltage Engineering, 2011, 37(7): 1614-1619. [35] Itikawa Yukikazu. Cross sections for electron collisions with oxygen molecules[J]. Journal of Physical and Chemical Reference Data, 2009, 38(1): 1-20. [36] Tanaka Y, Michishita T, Uesugi Y. Hydrodynamic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure[J]. Plasma Sources Science & Technology, 2005, 14(1): 134-151. [37] Kossyi I A, Kostinsky A Yu, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science & Technology, 1992, 1(3): 207-220. [38] He Wei, Liu Xinghua, Yang Fan, et al. Numerical simulation of direct current glow discharge in air with experimental validation[J]. Japanese Journal of Applied Physics, 2012, 51(2): 026001. [39] Farouk Tanvir, Farouk Bakhtier, Staack David, et al. Simulation of dc atmospheric pressure argon micro glow-discharge[J]. Plasma Sources Science & Tech- nology, 2006, 15(4): 676-688. [40] Luque Alejandro, Ebert Ute, Montijn Carolynne, et al. Photoionization in negative streamers: fast computa- tions and two propagation modes[J]. Applied Physics Letters, 2007, 90(8): [41] Zhelezniak M B, Mnatsakanian A Kh, Sizykh Sv. Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge[J]. High Temperature Science, 1982, 20:357-362. [42] Segur P, Bourdon A, Marode E, et al. The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges [J]. Plasma Sources Science & Technology, 2006, 15(4): 648-660. [43] Yi W J, Williams P F. Experimental study of streamers in pure N 2 and N 2 /O 2 mixtures and a approximate to 13cm gap[J]. Journal of Physics D-Applied Physics, 2002, 35(3): 205-218. [44] Sima Wenxia, Peng Qingjun, Yang Qing, et al. Study of the characteristics of a streamer discharge in air based on a plasma chemical model[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation, 2012, 19(2): 660-670. [45] Hagelaar G J M, De Hoog F J, Kroesen G M W. Boundary conditions in fluid models of gas discharges [J]. Physical Review E, 2000, 62(1): 1452-1454. [46] Tran T N, Golosnoy I O, Lewin P L, et al. Numerical modelling of negative discharges in air with experi- mental validation[J]. Journal of Physics D-Applied Physics, 2011, 44(1): [47] Zentner R. Rise time of negative corona pulses[J]. Zeitschrift Fur Angewandte Physik, 1970, 29(5): 294. [48] Soria Hoyo C, Pontiga F, Castellanos A. Particle- in-cell simulation of Trichel pulses in pure oxygen[J]. Journal of Physics D-Applied Physics, 2007, 40(15): 4552-4560. [49] Akel M, Salo S A, Wong C S. Electron temperature measurement of argon focussed plasma based on non- local thermodynamic equilibrium model[J]. Journal of Fusion Energy, 2013, 32(3): 350-354. [50] Sima Wenxia, Peng Qingjun, Yang Qing, et al. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen- nitrogen mixtures[J]. Chinese Physics B, 2013, 22(1): 015203. [51] Marode E, Bastien F, Bakker M. Model of the streamer- induced spark formation based on neutral dynamics[J]. Journal of Applied Physics, 1979, 50(1): 140-146. [52] Lu Tiebing, Xiong Gaolin, Cui Xiang, et al. Analysis of corona onset electric field considering the effect of space charges[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1390-1393. [53] Chen J H, Davidson J H. Ozone production in the positive DC corona discharge: model and comparison to experiments[J]. Plasma Chem Plasma Process, 2002, 22(4): 495-522. [54] 彭庆军. 空气中流注放电等离子体化学模型研究及其影响因素分析[D]. 重庆: 重庆大学, 2012. [55] Lama W L, Gallo C F. Systematic study of electrical characteristics of trichel current pulses from negative needle-to-plane coronas[J]. Journal of Applied Physics, 1974, 45(1): 103-113.