Study on Plasma Enhanced CH4-CH3OH Conversion to Liquid Chemicals by Nanosecond Pulsed Dielectric Barrier Discharge
Hei Xueting1,2, Gao Yuan2, Dou Liguang2, Li Jiangwei2,3, Chen Genyong1, Shao Tao2,4
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450052 China; 2. Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 3. School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 China; 4. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:The direct one-step conversion of CH3OH with CH4 into value-added liquid chemicals could avoid the problems (harsh reaction conditions, industrial effluent and low atomic economy) that are usually engaged in industrial production. In this paper, CH4 and CH3OH are used to directly synthesize C2-C4 liquid products by nanosecond pulsed dielectric barrier discharge.The effects of Ar dilution, pulse rising and falling time on the electrical characteristics and conversion are investigated, and the reaction mechanism is also discussed.The results show that the main gaseous products are H2, CO, C2H6, C3H8, while the main liquid products are C2H5OH and C3H7OH. Penning ionization induced by Ar dilution is favorable for the liquid formation, which the highest total liquid selectivity is 16.4%.It is found that the larger rising&falling time could enhance the liquid formation with the fixed voltage and frequency. When the rising&falling timeare 500ns, the total liquid selectivity achieves 14.7%.
[1] Hmiel B, Petrenko V V, Dyonisius M N, et al.Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions[J]. Nature, 2020, 578(7795): 409-412. [2] 张建宇, 秦虎, 汪维. 中国开展甲烷排放控制关键问题与建议[J]. 环境与可持续发展, 2019, 44(5): 105-108. Zhang Jianyu, Qin Hu, Wang Wei.Key issues and suggestions on methane emission control in China[J]. Environment and Sustainable Development, 2019, 44(5): 105-108. [3] 白秀娟, 刘春梅, 兰维娟, 等. 甲醇能源的发展与应用现状[J]. 能源与节能, 2020(1): 54-55, 67. Bai Xiujuan, Liu Chunmei, Lan Weijuan, et al.Development and application status of methanol energy[J]. Energy and Energy Conservation, 2020(1): 54-55, 67. [4] 薛金召, 杨荣, 肖雪洋, 等. 中国甲醇产业链现状分析及发展趋势[J]. 现代化工, 2016, 36(9): 1-7. Xue Jinzhao, Yang Rong, Xiao Xueyang, et al.Utilization status and prospect of methanol industrial chain in China[J]. Modern Chemical Industry, 2016, 36(9): 1-7. [5] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [6] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [7] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015. [8] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 61-69. [9] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16): 3494-3503. Wu Shilin, Yang Qing, Shao Tao.Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503. [10] 米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对BN/EP复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18): 3949-3959. Mi Yan, Gou Jiaxi, Liu Lulu, et al.Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3949-3959. [11] Vanraes P, Willems G, Nikiforov A, et al.Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge[J]. Journal of Hazardous Materials, 2015, 299: 647-655. [12] 夏文杰, 刘定新. Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报, 2021, 36(4): 765-776. Xia Wenjie, Liu Dingxin.Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776. [13] 张晓星, 王宇非, 崔兆仑, 等. 不同填充材料对介质阻挡放电降解SF6的实验研究[J]. 电工技术学报, 2021, 36(2): 397-406. Zhang Xiaoxing, Wang Yufei, Cui Zhaolun, et al.Experimental study on the degradation of SF6 by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406. [14] 肖焓艳, 张晓星, 肖淞, 等. 环境介质对介质阻挡放电降解SF6影响的实验[J]. 电工技术学报, 2017, 32(20): 20-27. Xiao Hanyan, Zhang Xiaoxing, Xiao Song, et al.Experiment of effects of ambient medium on sulfur hexafluoride degradation for a double dielectric barrier discharge reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 20-27. [15] Wang Yafen, You Y S, Tsai C H, et al.Production of hydrogen by plasma-reforming of methanol[J]. International Journal of Hydrogen Energy, 2010, 35(18): 9637-9640. [16] Bundaleska N, Tsyganov D, Saavedra R, et al.Hydrogen production from methanol reforming in microwave “tornado”-type plasma[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9145-9157. [17] Zhang Jing, Yuan Qichao, Zhang Jialiang, et al.Direct synthesis of ethylene glycol from methanol by dielectric barrier discharge[J]. Chemical Communications, 2013, 49(86): 10106-10108. [18] Zhang Jing, Li Teng, Wang Dongjiang, et al.The catalytic effect of H2 in the dehydrogenation coupling production of ethylene glycol from methanol using a dielectric barrier discharge[J]. Chinese Journal of Catalysis, 2015, 36(3): 274-282. [19] 李腾. 甲醇介质阻挡放电直接合成乙二醇的研究[D]. 大连: 大连理工大学, 2015. [20] Wang Xiaoling, Gao Yuan, Zhang Shuai, et al.Nanosecond pulsed plasma assisted dry reforming of CH4: the effect of plasma operating parameters[J]. Applied Energy, 2019, 243: 132-144. [21] Sun Hao, Zhang Shuai, Gao Yuan, et al.Self-heating effect on stability of a nanosecond pulsed DBD interacting with heptane and methylnaphthalene as heavy oil model compounds[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 431-438. [22] Gao Yuan, Dou Liguang, Zhang Shuai, et al.Coupling bimetallic Ni-Fe catalysts and nanosecond pulsed plasma for synergistic low-temperature CO2 methanation[J]. Chemical Engineering Journal, 2021, 420: 127693. [23] Zhang Shuai, Gao Yuan, Sun Hao, et al.Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge[J]. Plasma Science and Technology, 2021, 23(6): 064007. [24] Itikawa Y, Mason N.Cross sections for electron collisions with water molecules[J]. Journal of Physical and Chemical Reference Data, 2005, 34(1): 1-22. [25] Morgan W L. MORGAN database[DB/OL] (2013-06-04). https://nl.lxcat.net/data/set_type.php. [26] 杨勇, 梅丹华, 段戈辉, 等. 不同电源激励Ar同轴介质阻挡放电特性对比[J]. 高电压技术, 2020, 46(12): 4355-4364. Yang Yong, Mei Danhua, Duan Gehui, et al.Comparison of discharge characteristics of Ar coaxial dielectric barrier discharge dirven by different power supplies[J]. High Voltage Engineering, 2020, 46(12): 4355-4364. [27] 储海靖, 刘峰, 庄越, 等. 水蒸气添加对纳秒脉冲激励氩气DBD放电特性的影响[J]. 高电压技术, 2021, 47(3): 885-893. Chu Haijing, Liu Feng, Zhuang Yue, et al.Influence of H2O addition on discharge characteristics of nanosecond pulsed Ar dielectric barrier discharge[J]. High Voltage Engineering, 2021, 47(3): 885-893. [28] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 1329-1337. Wang Xiaoling, Gao Yuan, Zhang Shuai, et al.Effects of pulse parameters on dry reforming of CH4 by pulsed DBD plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1329-1337. [29] De Bie C, Verheyde B, Martens T, et al.Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge[J]. Plasma Processes and Polymers, 2011, 8(11): 1033-1058. [30] Ing W C, Sheng C Y, Bozzelli J W.Development of a detailed high-pressure reaction model for methane/ methanol mixtures under pyrolytic and oxidative conditions and comparison with experimental data[J]. Fuel Processing Technology, 2003, 83(1/2/3): 111-145. [31] Xia W S, Zhu R S, Lin M C, et al.Low-energy paths for the unimolecular decomposition of CH3OH: a G2M/statistical theory study[J]. Faraday Discussions, 2001, 119(1): 191-205. [32] Yan Zong cheng, Li Chen, Lin Wang hong. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions[J]. International Journal of Hydrogen Energy, 2009, 34(1): 48-55. [33] Kabashima H, Einaga H, Futamura S.Hydrogen generation from water, methane, and methanol with nonthermal plasma[J]. IEEE Transactions on Industry Applications, 2003, 39(2): 340-345. [34] Du Changming, Mo Jianmin, Li Hongxia.Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: challenges and opportunities[J]. Chemical Reviews, 2015, 115(3): 1503-1542. [35] 刘倩, 郑洪涛, 杨仁, 等. 介质阻挡放电辅助甲烷蒸汽重整的动力学分析[J]. 哈尔滨工程大学学报, 2014, 35(10): 1294-1300. Liu Qian, Zheng Hongtao, Yang Ren, et al.Kinetic analysis of methane steam reforming assisted by dielectric barrier discharge[J]. Journal of Harbin Engineering University, 2014, 35(10): 1294-1300.