Experimental Study on the Degradation of SF6 by Dielectric Barrier Discharge with Different Packing Materials
Zhang Xiaoxing1,2, Wang Yufei1, Cui Zhaolun2, Tian Yuan2, Wang Hao3
1. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System Hubei University of Technology Wuhan 430068 China;
2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China;
3. State Grid Hubei Electric Power Company Maintenance Company Wuhan 430050 China
As a greenhouse gas, the recovery and degradation of SF6 industrial waste gas is a research hotspot in the field of environment. Based on the double-layer dielectric barrier discharge (DBD) reactor, the degradation process of SF6 with glass beads, γ-Al2O3 particles and no packing system was studied. The results show that the addition of packing materials can change the physical parameters of the reactor and increase the effective capacitance of DBD discharge process and discharge power. In addition, the degradation removal efficiency (DRE) and energy yield (EY) of SF6 can be effectively improved by adding two kinds of packing materials. In the γ-Al2O3 system, the maximum DRE of 2% SF6 was 85.97% at 110W, and the EY reached 9.17g/(kW·h), far exceeding the case of no packing. The addition of two kinds of packing materials affects the amount of SF6 decomposition products. The addition of glass beads has no obvious effect on the degradation product, while the packing of γ-Al2O3 particles will make SF6 have a tendency to produce SO2 and inhibit the formation of SOF2, SO2F2 and SOF4. At the same time, the output of SO2 increases with the increase of input power. γ-Al2O3 particle packing can effectively improve DRE and EY while inhibiting the formation of refractory products such as SO2F2. The results show that adding suitable packing materials such as γ-Al2O3 particles can effectively promote the harmless degradation of SF6.
张晓星, 王宇非, 崔兆仑, 田远, 王浩. 不同填充材料对介质阻挡放电降解SF6的实验研究[J]. 电工技术学报, 2021, 36(2): 397-406.
Zhang Xiaoxing, Wang Yufei, Cui Zhaolun, Tian Yuan, Wang Hao. Experimental Study on the Degradation of SF6 by Dielectric Barrier Discharge with Different Packing Materials. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406.
[1] 颜湘莲, 王承玉, 季严松, 等. 气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J]. 电工技术学报, 2015, 30(22): 231-238.
Yan Xianglian, Wang Chengyu, Ji Yansong, et al.Modeling of the relation between SF6 decom- position products and interior faults in gas insulated equipment[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 231-238.
[2] Chen Dachang, Zhang Xiaoxing, Tang Ju, et al.Using single-layer HfS2 as prospective sensing device toward typical partial discharge gas in SF6-based gas-insulated switchgear[J]. IEEE Transactions on Electron Devices, 2019, 66(1): 689-695.
[3] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24): 16-24.
Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue.A review of degradation of SF6 waste by low temper- ature plasma[J]. Transactions of China Electro- technical Society, 2016, 31(24): 16-24.
[4] Zhang Xiaoxing, Li Yi, Tian Shuangshuang, et al.Decomposition mechanism of the C5-PFK/CO2 gas mixture as an alternative gas for SF6[J]. Chemical Engineering Journal, 2018, 336: 38-46.
[5] 王宝山, 余小娟, 侯华, 等. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33.
Wang Baoshan, Yu Xiaojuan, Hou Hua, et al.Review on the developments of structure-activity relationship and molecular design of the replacement dielectric gases for SF6[J]. Transactions of China Electro- technical Society, 2020, 35(1): 21-33.
[6] Reilly J, Prinn R, Harnisch J, et al.Multi-gas assessment of the Kyoto Protocol[J]. Nature, 1999, 401(6753): 549-555.
[7] Zhang Xiaoxing, Cui Zhaolun, Li Yi, et al.Theoretical study of the interaction of SF6 molecule on Ag(1-1-1) surfaces: a DFT study[J]. Applied Surface Science, 2018, 457: 745-751.
[8] Li Yi, Zhang Xiaoxing, Zhang Ji, et al.Assessment on the toxicity and application risk of C4F7N: a new SF6 alternative gas[J]. Journal of Hazardous Materials, 2019, 368: 653-660.
[9] Wu Yi, Wang Chunlin, Sun Hao, et al.Properties of C4F7N-CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients[J]. Journal of Physics D Applied Physics, 2018, 51(15): 155206.
[10] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Decom- position properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6[J]. Industrial& Engineering Chemistry Research, 2018, 57(14): 5173-5182.
[11] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893.
Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(12): 2883-2893.
[12] Li Yi, Zhang Xiaoxing, Tian Shuangshuang, et al.Insight into the decomposition mechanism of C6F12O- CO2 gas mixture[J]. Chemical Engineering Journal, 2019, 360: 929-940.
[13] 陈琪, 张晓星, 李祎, 等. 环保绝缘介质C4F7N/CO2/O2混合气体的放电分解特性[J]. 电工技术学报, 2020, 35(1): 80-87.
Chen Qi, Zhang Xiaoxing, Li Yi, et al.The discharge decomposition characteristics of environmental-friendly insulating medium C4F7N/CO2/O2 gas mixture[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 80-87.
[14] Kieffel Y, Biquez F.SF6 alternative development for high voltage switchgears[C]//IEEE Electrical Insu- lation Conference, Seattle, WA, 2015: 379-383.
[15] Zhang Xiaoxing, Xiao Hanyan, Tang Ju, et al.Recent advances in decomposition of the most potent green- house gas SF6[J]. Critical Reviews in Environmental Science & Technology, 2017, 47(18): 1763-1782.
[16] Zhang Jia, Zhou Jizhi, Liu Qiang, et al.Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge[J]. Environmental Science & Technology, 2013, 47(12): 6493-6499.
[17] Zhang Jia, Zhou Jizhi, Xu Zhiping, et al.Decom- position of potent greenhouse gas sulfur hexafluo- ride (SF6) by kirschsteinite-dominant stainless steel slag[J]. Environmental Science & Technology, 2014, 48(1): 599-606.
[18] Park N K, Park H G, Lee T J, et al.Hydrolysis and oxidation on supported phosphate catalyst for decom- position of SF6[J]. Catalysis Today, 2012, 185(1): 247-252.
[19] Kashiwagi D, Takai A, Takubo T, et al.Catalytic activity of rare earth phosphates for SF6 decom- position and promotion effects of rare earths added into AlPO4[J]. Journal of Colloid & Interface Science, 2009, 332(1): 136-144.
[20] Kashiwagi D, Takai A, Takubo T, et al.Metal phosphate catalysts effective for degradation of sulfur hexafluoride[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 632-640.
[21] Huang Li, Gu Dinghong, Yang Longyu, et al.Photo- reductive degradation of sulfur hexafluoride in the presence of styrene[J]. Journal of Enviromental Science, 2008, 20(2): 183-188.
[22] 王晓玲, 高远, 张帅, 等. 脉冲参数对介质阻挡放电等离子体CH4干重整特性影响的实验[J]. 电工技术学报, 2019, 34(6): 215-223.
Wang Xiaoling, Gao Yuan, Zhang Shuai, et al.Effects of pulse parameters on dry reforming of CH4 by pulsed DBD plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 215-223.
[23] Mei Danhua, Zhu Xinbo, He Yaling, et al.Plasma- assisted conversion of CO2, in a dielectric barrier discharge reactor: understanding the effect of packing materials[J]. Plasma Sources Science and Technology, 2015, 24(1): 015011.
[24] Gao Yuan, Zhang Shuai, Sun Hao, et al.Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges[J]. Applied Energy, 2018, 226: 534-545.
[25] Butterworth T D, Elder R, Allen R W K. Effects of particle size on CO2 reduction and discharge characteri- stics in a packed bed plasma reactor[J]. Chemical Engineering Journal, 2016, 293: 55-67.
[26] Minliang S, Wenjhy L A, Chen C Y.Decomposition of SF6 and H2S mixture in radio frequency plasma environment[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2906-2912.
[27] Kabouzi Y, Moisan M, Rostaing J C, et al.Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure[J]. Journal of Applied Physics, 2003, 93(12): 9483-9496.
[28] 金成刚. 射频等离子体放电及材料处理研究[D]. 苏州: 苏州大学, 2014.
[29] Tsai C H, Shao J M.Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment[J]. Journal of Hazardous Materials, 2008, 157(1): 201-206.
[30] Zhuang Quan, Clements B, Mcfarlan A, et al.Decom- position of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF6) using a dielectric barrier discharge (DBD) plasma[J]. Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35.
[31] Zhang Xiaoxing, Cui Zhaolun, Li Yalong, et al.Abatement of SF6 in the presence of NH3 by dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2018, 360: 341-348.
[32] 张英, 李亚龙, 崔兆仑, 等. H2O和O2对DBD降解高浓度SF6影响的实验研究[J]. 高电压技术, 2019, 45(2): 512-517.
Zhang Ying, Li Yalong, Cui Zhaolun, et al.Experi- ment of effect of H2O and O2 on degradation of high concentration SF6 by dielectric barrier discharge[J]. High Voltage Engineering, 2019, 45(2): 512-517.
[33] Hsin L C, How-Ming L, Li Chuncheng, et al.Influence of nonthermal plasma reactor type on CF4 and SF6 abatements[J]. IEEE Transactions on Plasma Science, 2008, 36(2): 509-515.
[34] Sun M Y, Dong-Hong K.Decomposition of sulfur hexafluoride by using a nonthermal plasma-assisted catalytic process[J]. Journal of the Korean Physical Society, 2011, 59(61): 3437.
[35] Wen Yuezhong, Jiang Xuanzhen.Decomposition of CO2 using pulsed corona discharges combined with catalyst[J]. Plasma Chemistry and Plasma Processing, 2001, 21(4): 665-678.
[36] Zheng Chenghang, Zhu Xinbo, Gao Xiang, et al.Experimental study of acetone removal by packed- bed dielectric barrier discharge reactor[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2761-2768.
[37] Manley T C.The electric characteristics of the ozonator discharge[J]. Journal of The Electro- chemical Society, 1943, 84(1): 83-96.
[38] Peeters F J J, Van de Sanden M C M. The influence of partial surface discharging on the electrical characterization of DBDs[J]. Plasma Sources Science and Technology, 2014, 24(1): 015016.
[39] Zhang Xiaoxing, Xiao Hanyan, Hu Xiong, et al.Effects of reduced electric field on sulfur hexafluo- ride removal for a double dielectric barrier discharge reactor[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 563-570.
[40] Lee H M, Chang M B, Wu Kuanyu.Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970.
[41] Kurte R, Beyer C, Heise H, et al.Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition[J]. Analytical & Bioanalytical Chemistry, 2002, 373(7): 639-646.