Influence of Insulation Layer Thickness on Electric Field and Temperature Field of HVDC Cable
Wei Yanhui1, Zheng Yuanhao1, Long Haiyong2, Li Guochang1, Li Shengtao3
1. Institute of Advanced Electrical Materials Qingdao University of Science and Technology Qingdao 266042 China; 2. TEBA Shandong Luneng Taishan Cable Co. Ltd Xintai 271200 China; 3. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
Abstract:The distribution of electric and temperature fields in high voltage cables is a key factors in the design of insulation thicknesses. In the study, an electric -thermal coupling simulation model of high-voltage direct current (HVDC) cable was established, and the changes of resistivity and thermal conductivity of cable insulation layer and semi-conducting layer with temperature were measured and analyzed. The influence of insulation layer thickness on the distribution of cable electric and temperature fields was calculated. The influence of load capacity and laying method on the temperature field distribution of cable with different insulation layer thickness was discussed. Experimental results show that the XLPE resistivity decreases by 2-3 orders of magnitude with increasing temperature (25-90℃), while the semi-conductive shield increases from 21.4Ω·cm to 75.5Ω·cm. Overall, the thermal conductivity of semi-conducting layer is about twice that of insulation layer. When the insulation thickness is increased from 20 mm to 35 mm, the electric field inside the insulating layer is reduced by about 34%. The temperature difference between inside and outside the insulation layer increases by about 54%. The temperature difference of the insulation layer increases from 3.5℃ for 800A to 31.4℃ for 2400A with the increase of the amperage. The heat dissipation efficiency of the three laying methods in descending order is tunnel laying, directly buried laying and pipeline laying.
魏艳慧, 郑元浩, 龙海泳, 李国倡, 李盛涛. 绝缘层厚度对高压直流电缆电场和温度场分布的影响[J]. 电工技术学报, 2022, 37(15): 3932-3940.
Wei Yanhui, Zheng Yuanhao, Long Haiyong, Li Guochang, Li Shengtao. Influence of Insulation Layer Thickness on Electric Field and Temperature Field of HVDC Cable. Transactions of China Electrotechnical Society, 2022, 37(15): 3932-3940.
[1] 陈曦. 交联聚乙烯高压直流电缆的研究现状与发展[J]. 电线电缆, 2015, 2(2): 1-5. Chen Xi.Research status and trend of XLPE HVDC cable[J]. Electric Wire & Cable, 2015, 2(2): 1-5. [2] Chen G, Hao Miao, Xu Zhiqiang, et al.Review of high voltage direct current cables[J]. CSEE Journal of Power and Energy Systems, 2015, 1(2): 9-21. [3] Jrgens C, Clemens M.Simulation of the electric field in high voltage direct current cables and the influence on the environment[C]//10th International Conference on Computational Electromagnetics, Edinburgh, 2019: 3-7. [4] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术,2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [5] 谢书鸿, 傅明利, 尹毅, 等. 中国交联聚乙烯绝缘高压直流电缆发展的三级跳:从160kV到200kV再到320kV[J]. 南方电网技术, 2015, 9(10): 5-12. Xie Shuhong, Fu Mingli, Yin Yi, et al.Triple jumps of XLPE insulated HVDC cable development in China: from 160 kV to 200 kV and then to 320 kV[J]. Southern Power System Technology, 2015, 9(10): 5-12. [6] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 179-191. [7] 黄光磊, 李喆, 杨丰源, 等. 直流交联聚乙烯电缆泄漏电流试验特性研究[J]. 电工技术学报, 2019, 34(1): 192-201. Huang Guanglei, Li Zhe, Yang Fengyuan, et al.Experimental research on leakage current of DC cross-linked polyethylene cable[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 192-201. [8] 孙兆渭. 挤出绝缘高压和超高压电缆的工作场强[J].电线电缆, 1997, 1(4): 2-7. Shun Zhaowei.Working field strength of extruded insulated high voltage and ultra high voltage cables[J]. Electric Wire & Cable, 1997, 1(4): 2-7. [9] Ogawa K, Kosugi T, Kato N, et al.The world first use of 500kV XLPE insulated aluminum sheathed power cables at the Shimogo and Imachi power stations[J]. IEEE Transac-tions on Power Delivery, 1990, 5(1): 26-32. [10] Fukawa N, Kawai T, Okano Y, et al.Development of 500kV XLPE cables and accessories for long distance underground transmission line, part 3: electrical properties of 500kV cables[J]. IEEE Power Engineering Review, 1996, 11(2): 627-634. [11] Yoda B, Ikeda C, Sekii Y, et al.Development of 500kV cross-linked polyethylene insulated power cable[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(1): 32-38. [12] Yamanaka T, Maruyama S, Tanaka T.The development of DC+/-500 kV XLPE cable in consideration of the space charge accumulation[C]// Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, 2003: 689-694. [13] Mirebeau P, Frohne C, Larsen V S.Review of HVDC insulated transmission cables technologies[C]//9th International Conference on Insulated Power Cables, Versailles, 2015: 1-5. [14] 欧阳本红, 刘松华, 邓显波, 等. 高压XLPE电缆绝缘厚度优化设计[J]. 高电压技术, 2016, 42(8):2388-2393. Ouyang Benhong, Liu Songhua, Deng Xianbo, et al.Optimization design for insulation thickness of high-voltage XLPE cable[J]. High Voltage Engineering, 2016, 42(8): 2388-2393. [15] 李栋, 朱智恩, 杨黎明, 等. ±535 kV直流电缆绝缘厚度理论设计与验证[J]. 电力工程技术, 2020, 39(1): 151-156. Li Dong, Zhu Zhien, Yang Lining, et al.Theoretical design and verification of ±535kV DC cable insulation thickness[J]. Electrical Power Engineering Technology, 2002, 39(1): 151-156. [16] 杨文英. 电力电缆温度在线监测系统的研究[D]. 吉林: 东北电力大学, 2008. [17] 杨延明. 基于有限元法的电力电缆载流量计算[D]. 哈尔滨: 哈尔滨理工大学, 2012. [18] 罗灵琳. 单芯电缆暂态温度场及载流量实时计算方法的研究[D]. 重庆: 重庆大学, 2008. [19] 王雅妮, 张洪亮, 吴建东, 等. 不同敷设方式下高压直流电缆温度场与电场仿真计算研究[J]. 绝缘材料, 2017, 50(7): 71-78. Wang Yani, Zhang Hongliang, Wu Jiandong, et al.Simulation and calculation of temperature field and electric field distribution of HVDC cable under different laying modes[J]. Insulation Materials, 2017, 50(7): 71-78. [20] 李国倡, 王家兴, 魏艳慧, 等. 高压直流电缆附件XLPE/SIR材料特性及界面电荷积聚对电场分布的影响[J]. 电工技术学报, 2021, 36(14): 3081-3089. Li Guochang, Wang Jiaxing, Wei Yanhui, et al.Effect of material properties of XLPE/SIR and interface charge accumulation on electric field distribution of HVDC cable accessory[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3081-3089. [21] 孙凤祥. 高压交联电缆减薄绝缘厚度的探讨[J]. 电世界, 2014, 55(12): 18-19. Shun Fengxiang, High-voltage cross-linked cables to reduce the thickness of insulation to explore[J]. Electric World, 2014, 55(12): 18-19. [22] 严璋,朱德恒. 高电压绝缘技术[M]. 北京: 中国电力出版社, 2007: 263-264. [23] Li Zhou, Zhan Ruopei, Li Yazhou, et al.Recent developments in HVDC transmission systems to support renewable energy integration[J]. Global Energy Interconnection, 2018, 1(5): 595-607. [24] Deng Heming, Cai Wei, Song You, et al.Fiber Bragg grating monitors for thermal and stress of the composite insulators in transmission lines[J]. Global Energy Interconnection, 2018, 1(3): 382-390.