Simulation Analysis of Dry-Type Transformer Thermal Network Model Considering Fluid Dynamics
Tang Zhao1,2, Liu Xuandong1, Chen Ming1
1. School of Electric Engineering Xi'an Jiaotong University Xi'an 710049 China; 2. China Railway First Survey and Design Institute Group Co. Ltd Xi'an 710043 China
Abstract:In order to analyze the axial temperature distribution and hot spot temperature of the windings of dry-type transformers under typical overload conditions, this paper proposes a thermal network model that considers fluid dynamics. First of all, considering the influence of temperature on material loss characteristics, a dry-type transformer three-dimensional magnetic-heat-fluid coupling simulation model was established. Accordingly, the forced heat dissipation process of dry-type transformers was accurately simulated, the temperature rise of transformer windings was calculated and the hot spot temperature under different load factors was predicted. The errors between the simulation and the factory temperature rise test data of the hottest temperature of the high-voltage winding and the low-voltage winding were 4.1% and 9.0%. According to the fluid field simulation results of the finite element model, the convective heat transfer resistance in the thermal network model was corrected. It is shown that after the thermal network model is corrected for the convective heat transfer resistance, the errors between the hottest temperature simulation results of the high-voltage winding and low-voltage winding and the factory temperature rise test data are 2.9% and 10.7%, respectively, and the axial temperature distribution has a good agreement. The proposed thermal network model of dry-type transformers considering fluid dynamics overcomes the shortcomings of low calculation accuracy of traditional thermal circuit models and long calculation time of finite element models, which has good guidance for dry-type transformer design and operation evaluation effect.
[1] 蔡定国, 唐金权. 干式变压器用绝缘材料、绝缘结构与系统综述[J]. 绝缘材料, 2019, 52(11): 1-8. Cai Dingguo, Tang Jinquan.Summary of insulating material, insulation structure and system for dry-type transformer[J]. Insulating Materials, 2019, 52(11): 1-8. [2] 王有元, 王施又, 黄炎光, 等. 干式变压器环氧树脂热老化特性研究[J]. 高电压技术, 2018, 44(1): 187-194. Wang Youyuan, Wang Shiyou, Huang Yanguang, et al.Study on thermal aging characteristics of epoxy resin of dry-type transformer[J]. High Voltage Engin- eering, 2018, 44(1): 187-194. [3] 张鑫, 王伟, 马昊, 等. 干式变压器绝缘试样活化能与热老化程度的关联特性[J]. 电工电能新技术, 2020, 39(3): 9-16. Zhang Xin, Wang Wei, Ma Hao, et al.Correlation between activation energy and thermal aging degree of insulating samples from dry-type transformer[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(3): 9-16. [4] 田慕琴, 朱晶晶, 宋建成, 等. 基于流固耦合分析的矿用干式变压器温度场仿真[J]. 高电压技术, 2016, 42(12): 3972-3981. Tian Muqin, Zhu Jingjing, Song Jiancheng, et al.Temperature field simulation of coal dry-type trans- former based on fluid-solid coupling analysis[J]. High Voltage Engineering, 2016, 42(12): 3972-3981. [5] 曾非同, 关向雨, 黄以政, 等. 基于多尺度多物理场的油浸式变压器流动-传热数值研究[J]. 电工技术学报, 2020, 35(16): 3436-3444. Zeng Feitong, Guan Xiangyu, Huang Yizheng, et al.Numerical study on flow-heat transfer of oil- immersed transformer based on multiple-scale and multiple-physical fields[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3436-3444. [6] Liu Chao, Ruan Jiangjun, Wen Wu, et al.Temperature rise of a dry-type transformer with quasi-3D coupled- field method[J]. IET Electric Power Applications, 2016, 10(7): 598-603. [7] 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. Jia Yingjie, Xiao Fei, Luo Yifei, et al.Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. [8] Wang Qingyu, Wang Haoran, Peng Zongren, et al.3-D coupled electromagnetic-fluid-thermal analysis of epoxy impregnated paper converter transformer bushings[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 630-638. [9] 李永建, 闫鑫笑, 张长庚, 等. 基于磁-热-流耦合模型的变压器损耗计算和热点预测[J]. 电工技术学报, 2020, 35(21): 4483-4491. Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al.Numerical prediction of losses and local overheating in transformer windings based on magnetic-thermal- fluid model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491. [10] 王泽忠, 李明洋, 宣梦真, 等. 单相四柱式变压器直流偏磁下的温升试验及仿真分析[J]. 电工技术学报, 2021, 36(5): 1006-1013. Wang Zezhong, Li Mingyang, Xuan Mengzhen, et al.Temperature rise test and simulation of single-phase four-column transformer under DC-bias[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(5): 1006-1013. [11] Liao Caibo, Ruan Jiangjun, Liu Chao, et al.3-D coupled electromagnetic-fluid-thermal analysis of oil- immersed triangular wound core transformer[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [12] 王永强, 马伦, 律方成, 等. 基于有限差分和有限体积法相结合的油浸式变压器三维温度场计算[J]. 高电压技术, 2014, 40(10): 3179-3185. Wang Yongqiang, Ma Lun, Lü Fangcheng, et al.Calculation of 3D temperature field of oil immersed transformer by the combination of the finite element and finite volume method[J]. High Voltage Engin- eering, 2014, 40(10): 3179-3185. [13] 冯建勤, 康国平, 赵楠, 等. 干式变压器热等效电路研究[J]. 变压器, 2012, 49(12): 17-20. Feng Jianqin, Kang Guoping, Zhao Nan, et al.Research on thermal equivalent circuit for dry-type transformer[J]. Transformer, 2012, 49(12): 17-20. [14] 罗汉武, 陈连凯, 姜国义, 等. 计及环境条件的电力变压器热路模型及其应用[J]. 高电压技术, 2018, 44(11): 3561-3568. Luo Hanwu, Chen Liankai, Jiang Guoyi, et al.Thermal circuit model of the transformer considering environment factors and its application[J]. High Voltage Engineering, 2018, 44(11): 3561-3568. [15] Zhang Shibao.Evaluation of thermal transient and overload capability of high-voltage bushings with ATP[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1295-1301. [16] 张施令, 彭宗仁, 邓志祥, 等. 集总RC热网络方法应用于油气套管暂态温度计算[J]. 高电压技术, 2015, 41(7): 2294-2301. Zhang Shiling, Peng Zongren, Deng Zhixiang, et al.Application of lumped RC thermal network method in transient temperature calculation of oil/SF6 bushing[J]. High Voltage Engineering, 2015, 41(7): 2294-2301. [17] Akbari M, Rezaei-Zare A.Transformer bushing thermal model for calculation of hot-spot temperature considering oil flow dynamics[J]. IEEE Transactions on Power Delivery, 2021, 36(3): 1726-1734. [18] IEEE C57.110-2018. IEEE recommended practice for establishing liquid-immersed and dry-type power and distribution transformer capability when supplying nonsinusoidal load currents[S]. America: IEEE Power and Energy Society, 2018. [19] 赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究[J]. 电工技术学报, 2021, 36(13): 2782-2790. Zhao Zhigang, Xu Man, Hu Xinjian.Research on magnetic losses characteristics of ferromagnetic materials based on improvement loss separation model[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2782-2790. [20] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. [21] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. [22] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. Wang Xiaofei, Dai Ying, Luo Jian.Waterway design and temperature field analysis of vehicle permanent magnet synchronous motor based on fluid-solid coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 22-29.