Calculation and Analysis of Transformer Core Loss Due to Technological Hole
Dou Runtian1,2, Li Yongjian1,2, Zhang Xian1,2, Yang Ming1,2, Chen Ruiying1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:The loss and local temperature of the transformer core will be increased due to the presence of technological stacking holes, and even the performance of the transformer will be deteriorated. To study the influence of technological holes on transformer core loss and performance, the alternating magnetic properties of silicon steel materials are measured and the two-dimensional magnetic field of the holed core model is analyzed based on the Steinmetz formula. The theoretical calculation method of core loss caused by the hole with different shapes and sizes is proposed. Based on the finite element method, the two-dimensional transient magnetic field simulations of the grain-oriented steel sheets commonly used in transformer core are carried out, and the influence of technological holes with different types on transformer core loss is compared and analyzed. The magnetic properties testing system for silicon steel samples with the holes is established. The core loss and local temperature rise caused by the holes are quantitatively measured to verify the theoretical calculation method. The simulation and experimental results show that the calculation method of the core loss rise caused by the technological holes has high accuracy and engineering applicability.
窦润田, 李永建, 张献, 杨明, 陈瑞颖. 受工艺孔影响的变压器铁心损耗计算与分析[J]. 电工技术学报, 2022, 37(12): 2909-2923.
Dou Runtian, Li Yongjian, Zhang Xian, Yang Ming, Chen Ruiying. Calculation and Analysis of Transformer Core Loss Due to Technological Hole. Transactions of China Electrotechnical Society, 2022, 37(12): 2909-2923.
[1] 宋悠全, 李高龙, 姚秋华, 等. 叠片工艺孔对变压器铁心性能影响分析[J]. 变压器, 2019, 56(8): 14-18. Song Youquan, Li Gaolong, Yao Qiuhua, et al.Influence analysis of auxiliary hole on performance of transfomer core[J]. Transformer, 2019, 56(8): 14-18. [2] 鲁殿国. 变压器铁心的制造对损耗的影响[J]. 变压器, 1980, 5(9): 25-27. Lu Dianguo.Influence of transformer core manufa-cturing on loss[J]. Transformer, 1980, 5(9): 25-27. [3] Gunes T, Derebasi N, Erdonmez C.Localized flux density distribution around a hole in non-oriented electrical steels[J]. IEEE Transactions on Magnetics, 2015, 51(1): 1-4. [4] 赵小军, 刘小娜, 肖帆, 等. 基于Preisach模型的取向硅钢片直流偏磁磁滞及损耗特性模拟[J]. 电工技术学报, 2020, 35(9): 1849-1857. Zhao Xiaojun, Liu Xiaona, Xiao Fan, et al.Hysteretic and loss modeling of silicon steel sheet under the DC biased magnetization based on the Preisach model[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1849-1857. [5] 赵志刚, 马习纹, 姬俊安, 等. 谐波激励条件下铁心动态Energetic建模与验证[J]. 电工技术学报, 2020, 32(20): 4241-4250. Zhao Zhigang, Ma Xiwen, Ji Jun'an, et al. Dynamic energetic modeling and verification of core under harmonic excitation[J]. Transactions of China Elec-trotechnical Society, 2020, 32(20): 4241-4250. [6] 陈龙, 易琼洋, 贲彤, 等. 全局优化算法在Preisach磁滞模型参数辨识问题中的应用与性能对比[J]. 电工技术学报, 2021, 36(12): 2585-2593, 2606. Chen Long, Yi Qiongyang, Ben Tong, et al.Appli-cation and performance comparison of global optimi-zation algorithms in the parameter identification problems of the Preisach hysteresis model[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(12): 2585-2593, 2606. [7] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883. Chi Qingguang, Zhang Yanli, Chen Jichao, et al.Measurement and modeling of loss and mag-netostrictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883. [8] 赵志刚, 徐曼, 胡鑫剑. 基于改进损耗分离模型的铁磁材料损耗特性研究[J]. 电工技术学报, 2021, 36(13): 2782-2790. Zhao Zhigang, Xu Man, Hu Xinjian.Research on magnetic losses characteristics of ferromagnetic materials based on improvement loss separation model[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2782-2790. [9] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [10] 刘刚, 孙立鹏, 王雪刚, 等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909-4918. Liu Gang, Sun Lipeng, Wang Xuegang, et al.Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909-4918. [11] Steinmetz C. On the law of hysteresis[J]. Transactions of the American Institute of Electrical Engineers, 1892, 9(1): 1-64. [12] 康丽, 张艳丽, 唐伟, 等. 基于变系数Steinmetz公式的直流偏磁下铁心损耗计算[J]. 电工技术学报, 2019, 34(1): 1-6. Kang Li, Zhang Yanli, Tang Wei, et al.Calculation of core loss under DC bias based on the variable coefficient Steinmetz formula[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 1-6. [13] Krings A, Soulard J.Overview and comparison of iron loss models for electrical machines[J]. Journal of Electrical Engineering, 2010, 10(3): 162-169. [14] Roshen W A.A practical, accurate and very general core loss model for nonsinusoidal waveforms[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 30-40. [15] 律方成,郭云翔. 非正弦激励下中频变压器铁损计算方法对比分析[J]. 高电压技术, 2017, 43(3): 808-813. Lü Fangcheng, Guo Yunxiang.Comparative analysis of core loss calculation methods for medium fre-quency transformer under nonsinusoidal excitation[J]. High Voltage Engineering, 2017, 43(3): 808-813. [16] Valkovic Z.Additional losses in three-phase trans-former cores[J]. Journal of Magnetism and Magnetic Materials, 1984, 41(1-3): 424-426. [17] teNyenhuis G, Girgis R S, Mechler G F. Other factors contributing to the core loss performance of power and distribution transformers[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 648-653. [18] Erdonmez C, Derebasi N, Gunes T.Influence of hole geometry on magnetic flux density distribution in lasercut non-oriented electrical steels at power fre-quencies[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30(11): 3309-3313. [19] Derebasi N, Erdonmez C.Influence of hole size and cutting method on localised flux density distribution around a hole in non-oriented electrical steels[J]. Journal of Superconductivity and Novel Magnetism, 2017, 30(6): 1643-1648. [20] Gunes T, Schäfer R, Derebasi N.Quantitative analysis of magnetic field distribution around circular non-magnetic region in grain-oriented Fe-3%Si steel[J]. IEEE Transactions on Magnetics, 2018, 54(2): 1-8. [21] Li Yongjian, Cheng Hao, Lin Zhiwei, et al.A modi-fied characterization method for core loss calculation under rotational magnetization[J]. IEEE Transactions on Magnetics, 2021, 57(2): 1-6. [22] Yang Ming, Li Yongjian, Yang Qingxin, et al.Design of novel high-frequency 2-D magnetic properties tester for nanocrystalline alloy[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-5. [23] 张长庚, 杨庆新, 李永建. 电工软磁材料旋转磁滞损耗测量及建模[J]. 电工技术学报, 2017, 32(11): 208-216. Zhang Changgeng, Yang Qingxin, Li Yongjian.Measurement and modeling of rotational hysteresis loss of electric soft magnetic material[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 208-216. [24] 鲁殿国. 电工钢片冲孔对铁心损耗的影响[J]. 变压器, 1991, 2(2): 34-37. Lu Dianguo.Influence of punching of electrical steel sheet on core loss[J]. Transformer, 1991, 2(2): 34-37. [25] Li Yongjian, Fu Yu, Dou Yu, et al.Magnetic properties measurement and analysis of electrical steel sheet under cutting influence[J]. AIP Advances, 2021, 11(2): 025115.