Abstract:In order to reduce the volume and electromagnetic interference of the wireless charging system of the implantable pacemaker, a wireless power supply system with a series parallel (LCL-LCL) compensation integrated coupling structure and working frequency of 150kHz was designed based on the principle of magnetic coupling resonance. The resonant coil was integrated into the main coil instead of the inductance. Firstly, the coil model was established and optimized, and the influence of turn number and turn spacing on coil mutual inductance was analyzed. Accordingly, a rounded square coil with the best coupling coefficient was designed. Then, the transmission efficiency of the integrated system and the non- integrated structural system was compared, and the advantages of this structure in efficiency and volume were verified. The feasibility and safety of the implantable charging system were further evaluated by simulating three-dimensional human tissue, calculating the specific absorption rate, temperature rise and electromagnetic field intensity. The experimental results show that the transmission efficiency of the system can reach 73% when the coil center is aligned 8mm apart, which is 15% higher than that of the non integrated structure, and the maximum temperature rise is only 1.2℃.
陈伟华, 宋邑玮, 闫孝姮. 心脏起搏器谐振式无线供能LCL-LCL的集成[J]. 电工技术学报, 2022, 37(12): 2924-2935.
Chen Weihua, Song Yiwei, Yan Xiaoheng. Integration of Resonant Wireless Energy Supply LCL-LCL for Cardiac Pacemaker. Transactions of China Electrotechnical Society, 2022, 37(12): 2924-2935.
[1] Xiao Chunyan, Wei Kangzheng, Cheng Dingning, et al.Wireless charging system considering eddy current in cardiac pacemaker shell: theoretical modeling, experiments, and safety simulations[J]. IEEE Transa-ctions on Industrial Electronics, 2017, 64(5): 3978-3988. [2] Kim Sanghoek, Ho John S, Poon Ada S Y. Wireless power transfer to miniature implants: transmitter optimization[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(10): 4838-4845. [3] Abiri P, Abiri A, Packard R, et al.Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system[J]. Scientific Reports, 2017, 7(1): 6180-6188. [4] 谢文燕, 陈为. 全方向无线电能传输技术研究进[J]. 电力系统自动化, 2020, 44(4): 202-215. Xie Wenyan, Chen Wei.Research progress of omni-directional wireless power transfer technology[J]. Automation of Electric Power Systems, 2020, 44(4): 202-215. [5] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [6] 赵军, 徐桂芝, 张超, 等. 磁耦合谐振无线能量传输系统头部植入线圈对人体头部电磁辐射影响的研究[J]. 中国生物医学工程学报, 2012, 31(5): 649-654. Zhao Jun, Xu Guizhi, Zhang Chao, et al.Electro-magnetic radiation to head from head implantable coil powered via magnetic coupling resonance wireless energy transmission[J]. Chinese Journal of Biomedi-cal Engineering, 2012, 31(5): 649-654. [7] 宫飞翔, 魏志强, 丛艳平, 等. 植入式医疗设备电磁共振无线能量传输系统天线对人体电磁辐射安全影响的研究[J]. 中国生物医学工程学报, 2016, 35(4): 497-501. Gong Feixiang, Wei Zhiqiang, Cong Yanping, et al.Research on the effects of antenna electromagnetic radiation to human body safety for implantable medical device wireless energy transmission system based on magnetic resonance[J]. Chinese Journal of Biomedical Engineering, 2016, 35(4): 497-501. [8] Barretto E C S, Chavannes N, Douglas M. Challenges in safety and compliance assessment in wireless power transfer applications using numerical analysis: guidelines and solutions[C]//10th European Con-ference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016: 5-9. [9] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro-magnetic compatibility of wireless power trans-mission system[J]. Transactions of China Electro-technical Society, 2020, 35(13): 2855-2869. [10] Gong Feixiang, Wei Zhiqiang, Cong Yanping, et al.Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance[J]. Technology and Health Care, 2016, 25(4): 387-397. [11] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568. Wu Xusheng, Sun Pan, Yang Shenqin, et al.Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electro-technical Society, 2019, 34(8): 1559-1568. [12] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-12. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be sloved and corresponding countermeasures[J]. Auto-mation of Electric Power Systems, 2019, 43(18): 1-12. [13] 罗成鑫, 丘东元, 张波, 等. 多负载无线电能传输系统[J]. 电工技术学报, 2020, 35(12): 2499-2516. Luo Chengxin, Qiu Dongyuan, Zhang Bo, et al.Wireless power transfer system for multiple loads[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2499-2516. [14] Campi T, Cruciani, Palandrani F, et al.Wireless power transfer charging system for AIMDs and pacemakers[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(2): 633-642. [15] 刘帼巾, 白佳航, 崔玉龙, 等. 基于双LCL变补偿参数的磁耦合谐振式无线充电系统研究[J]. 电工技术学报, 2019, 34(8): 1569-1579. Liu Guojin, Bai Jiahang, Cui Yulong, et al.Double-sided LCL compensation alteration based on MCR-WPT charging system[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1569-1579. [16] 李洪宇, 王茜, 苗雨润, 等. LCL补偿型浮标感应耦合电能传输系统特性[J]. 仪器仪表学报, 2018, 39(2): 122-129. Li Hongyu, Wang Qian, Miao Yurun, et al.Characteristics of LCL compensation inductively coupled power transmission system for buoy[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 122-129. [17] Hernandez Sebastian N, Villa Villasenor N, Renero-Carrillo F J, et al. Design of a fully integrated inductive coupling system: a discrete approach towards sensing ventricular pressure[J]. Sensors, 2020, 20(5): 1525-1534. [18] Seo D W, Lee J H, Lee H, et al.Integration of resonant coil for wireless power transfer and implantable antenna for signal transfer[J]. Inter-national Journal of Antennas & Propagation, 2016, 1(1): 1-7. [19] Liu Chunhua, Jiang Chaoqiang, Song Jingjing, et al.An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4108-4117. [20] Laskovski A N, Yuce M R, Dissanayake T.Stacked spirals for use in biomedical implants[C]//Asia Pacific Microwave Conference, Singapore, 2009: 389-392. [21] Ahn S H, Lee W S.A compact module-integrated wireless power transfer system with a square metal plate[J]. Microwave and Optical Technology Letters, 2019, 61(5): 1235-1239. [22] Sadeque K, Goangseog C.Analysis and optimization of four-coil planar magnetically coupled printed spiral resonators[J]. Sensors, 2016, 16(8): 1219-1225. [23] Campi T, Cruciani S, Santis V D, et al.EMF safety and thermal aspects in a pacemaker equipped with a wireless power transfer system working at low frequency[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(2): 375-382. [24] Xiao Chunyan, Cheng Dingning, Wei Kangzheng.An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment and safety evaluation[J]. IEEE Transactions on Power Electronics, 2017, 33(6): 4894-4905. [25] Abiri P, Abiri A, Packard R, et al.Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system[J]. Scientific Reports, 2017, 7(1): 6180-6188. [26] Zhou Yujing, Liu Chunhua, Huang Yongcan.Wireless power transfer for implanted medical application: a review[J]. Energies, 2020, 13(11): 2837-2866. [27] Hasgall P A, Neufeld E, Gosselin M, et al.IT'IS database for thermal and electromagnetic parameters of biological tissues[J]. Journal of Cell Biology, 2012, 93(1): 170. [28] Pennes, Harry H.Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1948, 1(2): 93-122.