Dynamic Energetic Modeling and Verification of Core under Harmonic Excitation
Zhao Zhigang1,2, Ma Xiwen1, Ji Jun’an1, Zhang Peng1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Under the condition of harmonic excitation, the hysteresis loop characterizing the magnetic properties of the core is obviously distorted or even partially looped, resulting in a significant increase in core loss. In order to accurately simulate the hysteresis characteristics and calculate core loss of ferromagnetic materials under harmonic excitation conditions, based on the traditional static Energetic hysteresis model and the loss separation theory, a dynamic Energetic hysteresis loss model that could comprehensively consider harmonic characteristics was established. The artificial fish swarm algorithm combined with the normalized processing technology was used to identify the parameters of the traditional static Energetic model, and a dynamic loss coefficient solving method that could effectively consider the influence of local loop was proposed. The magnetic property test platform of the transformer core with arbitrary magnetic flux density waveform controllable was built. The hysteresis characteristics and loss characteristics of transformer core under different harmonic order, harmonic content and harmonic phase excitation conditions were experimentally studied. The comparison between the simulation results and the experimental data verified the correctness and effectiveness of the dynamic Energetic model of the core under the harmonic excitation conditions.
赵志刚, 马习纹, 姬俊安, 张鹏. 谐波激励条件下铁心动态Energetic建模与验证[J]. 电工技术学报, 2020, 35(20): 4241-4250.
Zhao Zhigang, Ma Xiwen, Ji Jun’an, Zhang Peng. Dynamic Energetic Modeling and Verification of Core under Harmonic Excitation. Transactions of China Electrotechnical Society, 2020, 35(20): 4241-4250.
[1] 李劲松, 杨庆新, 李永建, 等. 高频高磁通密度时叠置硅钢片的铁心损耗计算式改进[J]. 高电压技术, 2016, 42(3): 994-1002. Li Jingsong, Yang Qingxin, Li Yongjian, et al.Improved calculation formula of core losses for laminated silicon steels at high frequency and high flux density[J]. High Voltage Engineering, 2016, 42(3): 994-1002. [2] Kapeller H, Plassnegger B, Gragger J V.Iron-loss modeling based on a loss-separation approach in modelica[J]. IEEE Transactions on Magnetics, 2017, 54(3): 1-4. [3] 张占龙, 王科, 李德文, 等. 变压器谐波损耗计算及影响因素分析[J]. 电力系统保护与控制, 2011, 39(4): 68-72. Zhang Zhanlong, Wang Ke, Li Dewen, et al.Transformer harmonic loss calculation and influence factor analysis[J]. Power System Protection and Control, 2011, 39(4): 68-72. [4] 赵小军, 崔灿, 李琳, 等. 基于定点谐波平衡法的铁心磁滞与损耗特性分析[J]. 电工技术学报, 2014, 29(7): 10-18. Zhao Xiaojun, Cui Can, Li Lin, et al.Analysis of the hysteresis and loss characteristics in the laminated core by fixed-point harmonic-balanced method[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 10-18. [5] 张长庚, 杨庆新, 李永建. 电工软磁材料旋转磁滞损耗测量及建模[J]. 电工技术学报, 2017, 32(11): 208-216. Zhang Changgeng, Yang Qingxin, Li Yongjian.Measurement and modeling of rotational hysteresis loss of electric soft magnetic material[J]. Transac- tions of China Electrotechnical Society, 2017, 32(11): 208-216. [6] 王迎迎, 袁建生. 铁心材料饱和磁化强度的偏差对求解变压器涌流的影响(英文)[J]. 电工技术学报, 2019, 34(12): 2452-2459. Wang Yingying, Yuan Jiansheng.Influence of the error of saturation magnetization of core material on the solution of transformer inrush current[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(12): 2452-2459. [7] 张荣伦, 王帅, 穆海宝, 等. 大型电力变压器损耗带电测试技术研究[J]. 电工技术学报, 2019, 34(4): 683-692. Zhang Ronglun, Wang Shuai, Mu Haibao, et al.The on-site method for the loss characteristic in power transformer[J]. Transactions of China Electro- technical Society, 2019, 34(4): 683-692. [8] 赵志刚, 刘佳, 郭莹, 等. 非正弦励磁环境磁性材料改进损耗模型的研究[J]. 电工技术学报, 2019, 34(13): 2693-2699. Zhao Zhigang, Liu Jia, Guo Ying, et al.Investigation on the improved loss model of magnetic materials under non-sinusoidal excitation environment[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2693-2699. [9] 刘刚, 孙立鹏, 王雪刚, 等. 正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 13-22. Liu Gang, Sun Lipeng, Wang Xuegang, et al.Improvement of core loss calculation method and simulation application under sinusoidal and harmonic excitations[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 13-22. [10] 赵志刚, 郭莹, 刘佳, 等. 谐波激励条件下铁心损耗测量与计算[J]. 仪器仪表学报, 2018, 39(8): 162-168. Zhao Zhigang, Guo Ying, Liu Jia, et al.Measurement and calculation of transformer core loss under harmonic excitation[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 162-168. [11] Mayergoyz I D. Mathematical models of hysteresis[J]. IEEE Transactions on Magnetics, 1986, MAG-22(5): 603-608. [12] Kurt Wiesen, Charap S.A better scalar preisach model[J]. IEEE Transactions on Magnetics, 1988, 20(6): 2491-2493. [13] 关大伟. 基于Preisach模型的磁特性模拟方法研究[D]. 保定: 华北电力大学, 2017. [14] 段娜娜, 徐伟杰, 李永建, 等. 一种考虑温度和压力影响的磁滞模型及其实验验证[J]. 电工技术学报, 2019, 34(13): 2686-2692. Duan Nana, Xu Weijie, Li Yongjian, et al.A temperature and stress dependent hysteresis model with experiment validation[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2686-2692. [15] 王旭, 张艳丽, 唐伟, 等. 旋转磁化下逆矢量Jiles- Atherton磁滞模型改进[J]. 电工技术学报, 2018, 33(增刊2): 257-262. Wang Xu, Zhang Yanli, Tang Wei, et al.Improve- ment of inverse vector Jiles-Atherton hysteresis model under rotating magnetization[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 257-262. [16] 李阳. 基于动态J-A磁滞模型直流偏磁下的变压器铁损计算[D]. 天津: 天津工业大学, 2018. [17] Liu Ren, Li Lin.Simulated annealing algorithm coupled with a deterministic method for parameter extraction of energetic hysteresis model[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5. [18] Hauser H.Energetic model of ferromagnetic hysteresis[J]. Journal of Applied Physics, 1994, 75(5): 2584-2597. [19] Hauser H.Energetic model of ferromagnetic hysteresis 2: magnetization calculations of (110)[001] FeSi sheets by statistic domain behavior[J]. Journal of Applied Physics, 1995, 77(6): 2625-2633. [20] Hauser H.Energetic model of ferromagnetic hysteresis: isotropic magnetization[J]. Journal of Applied Physics, 2004, 96(5): 2753-2767. [21] 刘任, 李琳. 基于场分离技术与损耗统计理论的动态Energetic磁滞模型[J]. 中国电机工程学报, 2019, 39(21): 6412-6419. Liu Ren, Li Lin.Dynamic energetic hysteresis model based on field separation approach and statistical theory of losses[J]. Proceedings of the CSEE, 2019, 39(21): 6412-6419. [22] 王洋, 刘志珍. 基于Jiles Atherton磁滞理论的直流偏磁下铁心损耗预测[J]. 中国电机工程学报, 2017, 37(1): 313-323. Wang Yang, Liu Zhizhen.The forecasting method of core loss under DC bias based on the Jiles Atherton hysteresis theory[J]. Proceedings of the CSEE, 2017, 37(1): 313-323. [23] Jiles D C, Atherton D L.Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1): 48-60. [24] 刘任, 李琳. 基于模拟退火与Levenberg-Marquardt混合算法的Energetic磁滞模型参数提取[J]. 中国电机工程学报, 2019, 39(3): 875-884, 966. Liu Ren, Li Lin.Parameter extraction for Energetic hysteresis model based on the hybrid algorithm of simulated annealing and Levenberg-Marquardt[J]. Proceedings of the CSEE, 2019, 39(3): 875-884, 966. [25] 王洋, 刘志珍. 基于蛙跳模糊算法的Jiles Atherton铁心磁滞模型参数确定[J]. 电工技术学报, 2017, 32(4): 154-161. Wang Yang, Liu Zhizhen.Determination of Jiles Atherton core hysteresis model parameters based on fuzzy-shuffled frog leaping algorithm[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(4): 154-161. [26] 李晓磊. 一种新型的智能优化方法—人工鱼群算法[D]. 杭州: 浙江大学, 2003. [27] IEC/TR62383-2006 determination of magnetic loss under magnetic polarization waveforms including higher harmonic components, measurement, modelling and calculation methods[S]. UK: British Standards, 2006.