Coil Structures Optimization Method of Iron Core Reactor Based on Electromagnetic-Thermal-Structure Multi-Physical Field Coupling
Yuan Fating1, Lü Kai1, Liu Jianben2, Zhou Bing2, Tang Bo1
1. College of Electrical and New Energy China Three Gorges University Yichang 443002 China; 2. State Key Laboratory of Power Grid Environmental Protection Wuhan 430074 China
Abstract:In this paper, the windings of the core reactor are taken as the research object, and the optimization design is carried out to equalize the electromagnetic, temperature rise and vibration characteristics and improve the utilization rate of metal materials. Firstly, the influence of structural parameters of the reactor winding on the electromagnetic field, temperature rise and vibration is analyzed using the multi-physical field coupling finite element method of electromagnetic field, temperature field and structural field. According to the analysis results, combined with the orthogonal test method, the winding structure is optimized to minimize the number of winding conductors while balancing the electromagnetic, temperature rise and vibration characteristics of the reactor, and the best structural parameters of the core reactor coil are obtained. Then, the performance of the model before and after optimization is compared. The results show that the conductor consumption of the reactor winding after optimization is reduced by 16.8%, and the inductance deviation is only 0.6%, the maximum temperature rise of the coil is reduced by 7.3%, and the vibration displacement of the inner coil is increased by 14.3%. In contrast, the vibration of the outer coil remains unchanged, which meets the requirements of electromagnetic, temperature rise, and vibration.
[1] 张鹏宁, 李琳, 聂京凯, 等. 考虑铁心磁致伸缩与绕组受力的高压并联电抗器振动研究[J]. 电工技术学报, 2018, 33(13): 3130-3139. Zhang Pengning, Li Lin, Nie Jingkai, et al.Study on the vibration of high voltage shunt reactor considering of magnetostriction and winding force[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(13): 3130-3139. [2] Yuan Fating, Yuan Zhao, Liu Jun xiang, et al. Research on temperature field simulation of dry type air core reactor[C]//2017 20th International Con- ference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 2017: 1-5. [3] 袁召. 筒式多包封空心电抗器的热、磁优化研究[D]. 武汉: 华中科技大学, 2014. [4] Yuan Fating, Lü Kai, Qin Shihong, et al.Electromagnetic- thermal characteristics analysis of dry-type core reactor and optimization design based on the particle swarm algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(4): 536-544. [5] 夏天伟, 曹云东, 金巍, 高远智. 干式空心电抗器温度场分析[J]. 高电压技术, 1999, 25(4): 86-88. Xia Tianwei, Cao Yundong, Jin Wei, et al.The analysis of temperature field in dry air core reactor[J]. High Voltage Engineering, 1999, 25(4): 86-88. [6] 邓秋. 高耦合度分裂干式空心电抗器温度场计算研究[D]. 武汉: 华中科技大学, 2011. [7] Oliver A J.Estimation of transformer winding temperatures and coolant flows using a general network method[J]. IEE Proceedings C Generation, Transmission and Distribution, 1980, 127(6): 395. [8] Zhang Xiang, Wang Zhongdong.Assessment of hydraulic network models in predicting reverse flows in OD cooled disc type transformer windings[J]. IEEE Access, 7: 139249-139257. [9] Coddé J, van der Veken W, Baelmans M. Assessment of a hydraulic network model for zig-zag cooled power transformer windings[J]. Applied Thermal Engineering, 2015, 80: 220-228. [10] Weinläder A, Wu W, Tenbohlen S, et al. Prediction of the oil flow distribution in oil-immersed trans- former windings by network modelling and com- putational fluid dynamics[J]. IET Electric Power Applications, 2012, 6(2): 82. [11] Zhang Xiang, Wang Zhongdong, Liu Qiang.Prediction of pressure drop and flow distribution in disc-type transformer windings in an OD cooling mode[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 1655-1664. [12] 杨新生, 张云鹏, 徐桂芝, 等. 基于T-ψ 有限元法的多目标函数变压器优化设计[J]. 电工技术学报, 2021, 36(增刊1): 75-83. Yang Xinsheng, Zhang Yunpeng, Xu Guizhi, et al.Multi-objective optimization design of transformer base on T-ψ finite element method[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 75-83. [13] Yuan Fating, Lü Kai, Tang Bo, et al.Optimization design of oil-immersed iron core reactor based on the particle swarm algorithm and thermal network model[J]. Mathematical Problems in Engineering, 2021: 6642620. [14] 潘超, 米俭, 王格万, 等. 基于场路耦合的变压器绕组匝间短路电磁谐响应分析方法[J]. 电工技术学报, 2019, 34(4): 673-682. Pan Chao, Mi Jian, Wang Gewan, et al.Elec- tromagnetic harmonic response analysis method of inter-turn short circuit in transformer winding based on field circuit coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 673-682. [15] Ebrahimi B M, Fereidunian A, Saffari S, et al.Analytical estimation of short circuit axial and radial forces on power transformers windings[J]. IET Generation, Transmission & Distribution, 2014, 8(2): 250-260. [16] 何玉灵, 张文, 张钰阳, 等. 发电机定子匝间短路对绕组电磁力的影响[J]. 电工技术学报, 2020, 35(13): 2879-2888. He Yuling, Zhang Wen, Zhang Yuyang, et al.Effect of stator inter-turn short circuit on winding electromagnetic forces in generators[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2879-2888. [17] Bakshi A, Kulkarni S V.Analysis of buckling strength of inner windings in transformers under radial short-circuit forces[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 241-245. [18] 赵志刚, 李光范, 李金忠, 等. 基于有限元法的大型电力变压器抗短路能力分析[J]. 高电压技术, 2014, 40(10): 3214-3220. Zhao Zhigang, Li Guangfan, Li Jinzhong, et al.Analyzing the short-cinuit withstanding ability of large power transformer based the FEM method[J]. High Voltage Engineering, 2014, 40(10): 3214-3220. [19] Ahn H M, Kim S Y, Kim J K, et al.Numerical investigation for transient electromagnetic force computation of power transformer during short-circuit condition[J]. International Journal of Applied Elec- tromagnetics and Mechanics, 2016, 52(3/4): 1141-1149. [20] 兰生, 胡忠平, 廖福旺, 等. 短路电动力对变压器低压绕组辐向稳定性的研究[J]. 电机与控制学报, 2018, 22(5): 19-24. Lan Sheng, Hu Zhongping, Liao Fuwang, et al.Radial stability of transformer low voltage windings under sudden short-circuit[J]. Electric Machines and Con- trol, 2018, 22(5): 19-24. [21] 潘超, 苏昊, 蔡国伟, 等. 变压器直流偏磁下异常电流表征振动特性研究[J]. 电工技术学报, 2020, 35(9): 1868-1879. Pan Chao, Su Hao, Cai Guowei, et al.Research on characterization of core vibration by abnormal current of DC bias transformer[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1868-1879. [22] 姜志鹏, 周辉, 宋俊燕, 等. 干式空心电抗器温度场计算与试验分析[J]. 电工技术学报, 2017, 32(3): 218-224. Jiang Zhipeng, Zhou Hui, Song Junyan, et al.Temperature field calculation and experimental analysis of dry-type air-core reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 218-224. [23] 杨帆, 池骋, 刘刚, 等. 计及温度-电场强度非线性的换流变压器瞬态电场影响分析[J]. 电工技术学报, 2020, 35(23): 4971-4979. Yang Fan, Chi Cheng, Liu Gang, et al.Study on transient insulation condition of converter transformer based on nonlinearity between temperature and electric field[J]. Transactions of China Electro- technical Society, 2020, 35(23): 4971-4979. [24] Yuan Fating, Yuan Zhao, Wang Yong, et al.Research of electromagnetic and thermal optimization design on air core reactor[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13(5): 725-731. [25] 张新生, 肖飞, 王瑞田, 等. 考虑涡流的中频变压器箔式绕组电磁振动数值计算与分析[J]. 电工技术学报, 2018, 33(增刊2): 434-443. Zhang Xinsheng, Xiao Fei, Wang Ruitian, et al.Numerical calculation and analysis of electromagnetic vibration considering eddy current of foil-type winding in medium-frequency transformer[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(S2): 434-443. [26] 潘超, 陈祥, 蔡国伟, 等. 基于电磁-机械耦合原理的变压器三相不平衡运行绕组振动模-态特征[J]. 中国电机工程学报, 2020, 40(14): 4695-4707, 4747. Pan Chao, Chen Xiang, Cai Guowei, et al.Mode-state characteristics of three-phase unbalanced operation winding vibration of transformer based on electro- magnetic mechanical coupling principle[J]. Pro- ceedings of the CSEE, 2020, 40(14): 4695-4707, 4747.