Silicon carbide (SiC) MOSFET has the advantages of high switching speed and low loss, which will be more and more widely used in high efficiency and high power density applications. In these applications, SiC MOSFETs are facing severe reliability tests, and the online accurate extraction of junction temperature is essential for lifetime prediction and health assessment. This paper proposed an online junction temperature extraction method for power module based on built-in negative temperature coefficient (NTC) temperature sensor. First, the thermal network model between the built-in NTC sensor and the power chips considering the thermal coupling effect was established, and a fast loss calculation method for SiC MOSFET was proposed. Then, the thermal network parameters were extracted by finite element simulation, and the stability of thermal network parameters under different boundary conditions was verified. Simulation and experimental results show that the proposed method can accurately obtain the dynamic junction temperature, and the thermal network model parameters are not affected by changes in boundary conditions such as ambient temperature and heat dissipation conditions. It is suitable for junction temperature monitoring and lifetime prediction under real mission profiles.
刘平, 李海鹏, 苗轶如, 陈常乐, 黄守道. 基于内置温度传感器的碳化硅功率模块结温在线提取方法[J]. 电工技术学报, 2021, 36(12): 2522-2534.
Liu Ping, Li Haipeng, Miao Yiru, Chen Changle, Huang Shoudao. Online Junction Temperature Extraction for SiC Module Based on Built-in Temperature Sensor. Transactions of China Electrotechnical Society, 2021, 36(12): 2522-2534.
[1] Hamada K, Nagao M, Ajioka M, et al.SiC-emerging power device technology for next-generation electri- cally powered environmentally friendly vehicles[J]. IEEE Transactions on Electronic Devices, 2015, 62(2): 278-285.
[2] 王学梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379.
Wang Xuemei.Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379.
[3] 赵炫, 蒋栋, 刘自程, 等. SiC功率器件在轨道交通行业中的应用[J]. 机车电传动, 2020(1): 38-44.
Zhao Xuan, Jiang Dong, Liu Zicheng, et al.Appli- cation of silicon carbide power devices in rail transit[J]. Electric Drive for Locomotive, 2020(1): 38-44.
[4] 任磊, 韦徵, 龚春英, 等. 电力电子电路功率器件故障特征参数提取技术综述[J]. 中国电机工程学报, 2015, 35(12): 3089-3101.
Ren Lei, Wei Zheng, Gong Chunying, et al.Fault feature extraction techniques for power devices in power electronic converters: a review[J]. Proceedings of the CSEE, 2015, 35(12): 3089-3101.
[5] Yang Shaoyong, Bryant A, Mawby P, et al.An industry based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
[6] Wang Huai, Liserre M, Blaabjerg F.Toward reliable power electronics: challenges, design tools, and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 17-26.
[7] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727.
Wang Xuemei, Zhang Bo, Wu Haiping.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electro- technical Society, 2019, 34(4): 717-727.
[8] 周雒维, 王博, 张益, 等. 非平稳工况下功率半导体器件结温管理技术综述[J]. 中国电机工程学报, 2018, 38(8): 2394-2407, 2549.
Zhou Luowei, Wang Bo, Zhang Yi, et al.Review on junction temperature management of power semi- conductor devices under power fluctuation condition[J]. Proceedings of the CSEE, 2018, 38(8): 2394-2407, 2549.
[9] 任磊, 沈茜, 龚春英. 电力电子电路中功率晶体管结温在线测量技术研究现状[J]. 电工技术学报, 2018, 33(8): 1750-1761.
Ren Lei, Shen Qian, Gong Chunying.Current junction temperature online measurement techniques of power transistors in power electronic converters[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(8): 1750-1761.
[10] Khatir Z, Dupont L, Ibrahim A.Investigations on junction temperature estimation based on junction voltage measurements[J]. Microelectronics Reliability, 2010, 50(9-11): 1506-1510.
[11] Xu Zhuxian, Xu Fan, Wang Fei.Junction temperature measurement of IGBTs using short-circuit current as temperature-sensitive electrical parameter for converter prototype evaluation[J]. IEEE Transactions on Indu- strial Electronics, 2015, 62(6): 3419-3429.
[12] Chen H, Pickert V, Atkinson D J, et al.On-line monitoring of the mosfet device junction temperature by computation of the threshold voltage[C]// Proceedings of the 3rd IET International Conference on Power Electronics, Machines and Drives, The Contarf Castle, Dublin, 2006: 440-444.
[13] 方化潮, 郑利兵, 王春雷, 等. IGBT 模块栅极电压米勒平台时延与结温的关系[J]. 电工技术学报, 2016, 31(18): 134-141.
Fang Huachao, Zheng Libing, Wang Chunlei, et al.The relationship between junction temperature and time delay of gate voltage miller plateau of IGBT module[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 134-141.
[14] 孙鹏飞, 罗皓泽, 董玉斐, 等. 基于关断延迟时间的大功率IGBT模块结温提取方法研究[J]. 中国电机工程学报, 2015, 35(13): 3366-3372.
Sun Pengfei, Luo Haoze, Dong Yufei, et al.Junction temperature extraction of high power IGBT module based on turn-off delay time[J]. Proceedings of the CSEE, 2015, 35(13): 3366-3372.
[15] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716.
Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(4): 703-716.
[16] 魏克新, 杜明星. 基于集总参数法的IGBT模块温度预测模型[J]. 电工技术学报, 2011, 26(12): 79-84.
Wei Kexin, Du Mingxing.Temperature prediction model of IGBT modules based on lumped parameters method[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 79-84.
[17] 万萌, 应展烽, 张伟. 分立型功率MOSFET结温估计的非线性热网络模型和参数辨识方法[J]. 电工技术学报, 2019, 34(12): 2477-2488.
Wan Meng, Ying Zhanfeng, Zhang Wei.Nonlinear thermal network model and parameter identification method for junction temperature estimation of discrete power MOSFET[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2477-2488.
[18] 李辉, 胡姚刚, 刘盛权, 等. 计及焊层疲劳影响的风电变流器IGBT模块热分析及改进热网络模型[J]. 电工技术学报, 2017, 32(13): 80-87.
Li Hui, Hu Yaogang, Liu Shengquan, et al.Thermal analysis and improved thermal network model of IGBT module for wind power converter considering solder fatigue effects[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 80-87.
[19] Wintrich A, Nicolai U, Werner T, et al.Application manual power semiconductors[M]. Nuremberg: SEMIKRON International GmbH, 2011.
[20] Wang Ke, Liao Yongjun, Song Gaosheng.Over- temperature protection for IGBT modules[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2014: 1-7.
[21] Zhou Yu, Shi Wei, Tang Junsong, et al.Dynamic junction temperature estimation via built-in negative thermal coefficient (NTC) thermistor in high power IGBT modules[C]//IEEE Applied Power Electronics Conference and Exposition Tampa, FL, USA, 2017: 772-775.
[22] Ma Xin, Zhao Jia, Yang Yong.A new transient thermal impedance model for estimating the dynamic junction temperature of IGBT modules[C]//Inter- national Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2018: 1-5.
[23] Calzo G Lo, Lidozzi A, Solero L, et al.Thermal regulation as control reference in electric drives[C]// 15th International Power Electronics and Motion Control Conference, Novi Sad, Serbia, 2012: 1-7.
[24] 盛永和, 罗纳德P. 柯利诺. 电力电子模块设计与制造[M]. 北京: 机械工业出版社, 2011.
[25] Morgan A J, Xu Y, Hopkins D C, et al.Decom- position and electro-physical model creation of the CREE 1200V, 50A 3-Ph SiC module[C]//2016 IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA, 2016: 2141-2146.
[26] Ayadi M, Ammous A, Ounejjar Y, et al.Thermal interaction of semiconductor devices in multi-chip modules[C]//IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002: 6-16.