Weighted Optimization Design and Experimental Study of 6.5kV SiC MOSFET Module
Shang Hai, Liang Lin, Wang Yijian, Yang Yingjie
State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
摘要 针对高压SiC模块的封装关键问题(即绝缘性能、寄生参数、热管理),该文提出多目标加权优化方法,实现6.5kV SiC MOSFET模块多个性能指标的折中和优化。首先,通过建立电、热、力多物理场有限元模型分别对量化指标寄生电容、焊料层热应力以及电场强度进行建模,并对三者进行加权优化,得到最优尺寸参数以保证6.5kV SiC MOSFET模块的整体性能;然后,通过对外壳和端子的设计,保证模块外部绝缘可靠的同时尽可能降低寄生电感,实现模块寄生电感和外部绝缘性能的折中;最后,通过双脉冲实验、耐压测试等验证所研制模块的性能优势及多目标加权优化方法的有效性。结果表明,所提研制模块能够在4 500V/14A的条件下可靠工作;在寄生参数、绝缘性能得到优化的同时,保证了模块整体性能的优越性。
Abstract:Aiming at the key problems of high voltage SiC module packaging (i.e. insulation performance, parasitic parameters, thermal management), a multi-objective weighted optimization method was proposed in this paper to achieve the trade-off and optimization of multiple performance indexes of 6.5kV SiC MOSFET module. First, the parasitic capacitance, thermal stress of the solder layer and electric field strength were modeled respectively by establishing multi-physics finite element models. The three indexes were weighted and optimized to obtain the optimal dimensional parameters to ensure the overall performance of the 6.5kV SiC MOSFET module. Through the design of the housing and terminals, the parasitic inductance was reduced as much as possible while keeping the external insulation of the module reliable. The parasitic inductance and insulation performance of the module were compromised. Finally, the performance advantages of the developed module and the effectiveness of the multi-objective weighted optimization method were verified through the double pulse test and high potential test. The results show that the developed module can work reliably under the condition of 4 500V/14A. The superiority of the overall performance of the module is guaranteed, while the parasitic parameters and the insulation performance are optimized.
尚海, 梁琳, 王以建, 杨英杰. 6.5kV SiC MOSFET 模块加权优化设计与实验研究[J]. 电工技术学报, 2022, 37(19): 4911-4922.
Shang Hai, Liang Lin, Wang Yijian, Yang Yingjie. Weighted Optimization Design and Experimental Study of 6.5kV SiC MOSFET Module. Transactions of China Electrotechnical Society, 2022, 37(19): 4911-4922.
[1] 黄小娟, 王晓丽. 6500V/600A IGBT自主化封装研制与应用[J]. 电力电子技术, 2020, 54(8): 128-131. Huang Xiaojuan, Wang Xiaoli.Development and app-lication of 6500V/600A IGBT self-contained package[J]. Power Electronics, 2020, 54(8): 128-131. [2] Hinojosa M, O'Brien H, Van Brunt E, et al. Solid-state Marx generator with 24kV 4H-SIC IGBTs[C]//IEEE Pulsed Power Conference (PPC), Austin, TX, 2015: 1-5. [3] Ji Shiqi, Zhang Zheyu, Wang Fei.Overview of high voltage SiC power semiconductor devices: development and application[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 254-264. [4] Zhang Hao, Ang S S, Mantooth A, et al.A 6.5kV wire-bondless, double-sided cooling power electronic module[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012: 444-450. [5] 刘国友, 黄建伟, 覃荣震, 等. 高压大电流(4500V/600A)IGBT芯片研制[J]. 电工技术学报, 2021, 36(4): 810-819. Liu Guoyou, Huang Jianwei, Qin Rongzhen, et al.Development of large size IGBT chip with high power capacity of 4500V/600A[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 810-819. [6] DiMarino C M, Mouawad B, Johnson C M, et al. 10kV SiC MOSFET power module with reduced common-mode noise and electric field[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6050-6060. [7] Huang A Q, Zhu Qianlai, Wang Li, et al.15kV SiC MOSFET: an enabling technology for medium voltage solid state transformers[J]. CPSS Transa-ctions on Power Electronics and Applications, 2017, 2(2): 118-130. [8] DiMarino C M, Mouawad B, Johnson C M, et al. Design and experimental validation of a wire-bond-less 10kV SiC MOSFET power module[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 381-394. [9] Palmour J W, Cheng Lin, Pala V, et al.Silicon carbide power MOSFETs: breakthrough performance from 900V up to 15kV[C]//2014 IEEE 26th Inter-national Symposium on Power Semiconductor Devices & IC's (ISPSD), Waikoloa, HI, 2014: 79-82. [10] 李士颜, 杨晓磊, 黄润华, 等. 15kV/10A SiC功率MOSFET器件设计及制备[J]. 固体电子学研究与进展, 2021, 41(2): 93-97. Li Shiyan, Yang Xiaolei, Huang Runhua, et al.Simulation and fabrication of 15kV/10A SiC power MOSFET[J]. Research & Progress of SSE, 2021, 41(2): 93-97. [11] 金晓行, 李士颜, 田丽欣, 等. 6.5kV高压全SiC功率MOSFET模块研制[J]. 中国电机工程学报, 2020, 40(6): 1753-1758. Jin Xiaoxing, Li Shiyan, Tian Lixin, et al.Fabrication of 6.5kV high-voltage full SiC power MOSFET modules[J]. Proceedings of the CSEE, 2020, 40(6): 1753-1758. [12] Tousi M M, Ghassemi M.Electric field control by nonlinear field dependent conductivity dielectrics characterization for high voltage power module packaging[C]//2019 IEEE International Workshop on Integrated Power Packaging (IWIPP), Toulouse, 2019: 54-58. [13] 李俊杰, 梅云辉, 梁玉, 等. 功率器件高电压封装用复合电介质灌封材料研究[J]. 电工技术学报, 2022, 37(3): 786-792. Li Junjie, Mei Yunhui, Liang Yu, et al.Study on composite dielectric encapsulation materials for high voltage power device packaging[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 786-792. [14] Wang Ningyan, Cotton I, Robertson J, et al.Partial discharge control in a power electronic module using high permittivity non-linear dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1319-1326. [15] Cao Xiao, Wang Tao, Ngo K D T, et al. Parametric study of joint height for a medium-voltage planar package[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(3): 553-562. [16] Reynes H, Buttay C, Morel H.Protruding ceramic substrates for high voltage packaging of wide band-gap semiconductors[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, NM, 2017: 404-410. [17] Shin J W, Wang Chiming, Dede E M.Power semi-conductor module with low-permittivity material to reduce common-mode electromagnetic interference[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10027-10031. [18] 李宇雄. 基于层叠DBC的低杂散参数SiC混合封装集成模块关键技术研究[D]. 武汉: 华中科技大学, 2018. [19] 刘东明, 李学宝, 顼佳宇, 等. 高压SiC器件封装用有机硅弹性体高温宽频介电特性分析[J]. 电工技术学报, 2021, 36(12): 2548-2559. Liu Dongming, Li Xuebao, Xu Jiayu, et al.Analysis of high temperature wide band dielectric properties of organic silicone elastomer for high voltage SiC device packaging[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2548-2559. [20] Lee H, Smet V, Tummala R.A review of SiC power module packaging technologies: challenges, advances, and emerging issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 239-255. [21] 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584, 5885. Sheng Kuang, Dong Zezheng, Wu Xinke.Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE, 2019, 39(19): 5576-5584, 5885. [22] 刘国友, 罗海辉, 张鸿鑫, 等. 基于全铜工艺的750A/6500V高性能IGBT模块[J]. 电工技术学报, 2020, 35(21): 4501-4510. Liu Guoyou, Luo Haihui, Zhang Hongxin, et al.High performance 750A/6500V IGBT module based on full-copper processes[J]. Transactions of China Elec-trotechnical Society, 2020, 35(21): 4501-4510. [23] 能立强, 梅云辉, 陆国权. 基于多物理场仿真的平面封装SiC模块长寿命设计[J]. 中国电机工程学报, 2020, 40(6): 1769-1774. Neng Liqiang, Mei Yunhui, Lu Guoquan.Reliability design for planar multi-chip SiC modules based on electro-thermo-mechanical simulation[J]. Proceedings of the CSEE, 2020, 40(6): 1769-1774. [24] Passmore B S, Lostetter A B.A review of SiC power module packaging technologies: attaches, intercon-nections, and advanced heat transfer[C]//2017 IEEE International Workshop on Integrated Power Packaging (IWIPP), Delft, 2017: 1-5. [25] Yao Yiying, Lu Guoquan, Boroyevich D, et al.Survey of high-temperature polymeric encapsulants for power electronics packaging[J]. IEEE Transactions on Com-ponents, Packaging and Manufacturing Technology, 2015, 5(2): 168-181. [26] 曾正, 欧开鸿, 吴义伯, 等. 车用双面散热功率模块的热-力协同设计[J]. 电工技术学报, 2020, 35(14): 3050-3064. Zeng Zheng, Ou Kaihong, Wu Yibo, et al.Thermo-mechanical co-design of double sided cooling power module for electric vehicle application[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(14): 3050-3064. [27] 曾正, 李晓玲, 林超彪, 等. 功率模块封装的电-热-力多目标优化设计[J]. 中国电机工程学报, 2019, 39(17): 5161-5171, 5297. Zeng Zheng, Li Xiaoling, Lin Chaobiao, et al.Electric-thermal-stress oriented multi-objective optimal design of power module package[J]. Proceedings of the CSEE, 2019, 39(17): 5161-5171, 5297. [28] Kawamoto T, Takuma T, Goshima H, et al.Triple-junction effect and its electric field relaxation in three dielectrics[J]. Electrical Engineering in Japan, 2009, 167(1): 1-8. [29] Fu Pengyu, Zhao Zhibin, Cui Xiang, et al.Electrical field analysis of press-pack IGBTs[C]//2017 Sixth Asia-Pacific Conference on Antennas and Pro-pagation (APCAP), Xi'an, 2017: 1-3. [30] Ji Shiqi, Zheng Sheng, Wang Fei, et al.Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10kV SiC MOSFET[J]. IEEE Transactions on Power Electronics, 2018, 33(5): 4317-4327. [31] 翟超. IGBT模块封装热应力研究[D]. 杭州: 浙江大学, 2013. [32] Suhir E.Analysis of interfacial thermal stresses in a trimaterial assembly[J]. Journal of Applied Physics, 2001, 89(7): 3685-3694. [33] Bayer C F, Baer E, Waltrich U, et al.Simulation of the electric field strength in the vicinity of metal-lization edges on dielectric substrates[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 257-265. [34] 邓二平. 压接型IGBT器件内部电-热-力多物理场耦合模型研究[D]. 北京: 华北电力大学, 2018. [35] Jiang Nan, Chen Minyou, Xu Shengyou, et al.Lifetime evaluation of solder layer in an IGBT module under different temperature levels[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016: 3137-3141. [36] 欧开鸿, 曾正, 王亮, 等. 双面散热SiC功率模块的可靠性分析和寿命评估[J]. 中国电机工程学报, 2021, 41(9): 3293-3304. Ou Kaihong, Zeng Zheng, Wang Liang, et al.Reliability analysis and lifetime assessment of double-sided cooling SiC Power Module[J]. Pro-ceedings of the CSEE, 2021,41(9): 3293-3304. [37] GB4943.1-2011 信息技术设备安全第1部分: 通用要求[S].