Abstract:Compared with the Si counterpart, the SiC power device performs higher current density, junction-case thermal resistance and junction temperature, smaller footprint size, active bonding area and parallel bonding wires. Therefore, the electro-thermal stress of the bonding wire increases dramatically, which challenges the safety and reliability of the SiC power module. The ampacity of bonding wire of the next-generation power packaging is urgently pursued. From the aspects of current density and junction temperature, the obstacles of bonding wire for SiC power module packaging are clarified. Taking the continuous or pulsed load current into account, insightful mathematical models are established to characterize the ampacity of single and parallel bonding wires. By using bonding wires with different diameters, the simulated and experimental results are presented to ensure the effectiveness and validation of the proposed models. The ampacity degradation effect of parallel bonding wires is modeled and examined. This paper can provide guidance for the optimal design of bonding wire for the SiC power module.
艾盛祥, 曾正, 王亮, 孙鹏, 张嘉伟. 功率模块封装键合线的通流能力:模型与实证[J]. 电工技术学报, 2022, 37(20): 5227-5240.
Ai Shengxiang, Zeng Zheng, Wang Liang, Sun Peng, Zhang Jiawei. Ampacity of Bonding Wire for Power Module Packaging: Model and Experiment. Transactions of China Electrotechnical Society, 2022, 37(20): 5227-5240.
[1] She Xu, Huang Alex Qin, Lucía Ó, et al.Review of silicon carbide power devices and their applica-tions[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [2] Millán J, Godignon P, Perpiñà X, et al.A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163. [3] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J]. 电工技术学报, 2021, 36(12): 2560-2575. Zhang Jun, Zhang Li, Cheng Yu.Review of the lifetime evaluation for the IGBT module[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(12): 2560-2575. [4] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices: a review and possible alternatives[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(4): 703-716. [5] 邵天骢, 郑琼林, 李志君, 等. 基于干扰动态响应机理的SiC MOSFET驱动设计[J]. 电工技术学报, 2021, 36(20): 4204-4214. Shao Tiancong, Zheng Trillion Q, Li Zhijun, et al.SiC MOSFET gate driver design based on inter-ference dynamic response mechanism[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(20): 4204-4214. [6] Zhang Lei, Yuan Xibo, Wu Xiaojie, et al.Perfor-mance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [7] Chen Cai, Luo Fang, Kang Yong.A review of SiC power module packaging: Layout, material system and integration[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(3): 170-186. [8] 曾正. SiC功率器件的封装测试与系统集成[M]. 北京: 科学出版社, 2020. [9] Lee H, Smet V, Tummala R.A review of SiC power module packaging technologies: challenges, advances, and emerging issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 239-255. [10] Jiang Taosha, Rodrigues R, Raheja U, et al.Over-current for aluminum bonding wires in WBG power semiconductors[C]//IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, USA, 2019: 272-276. [11] 张经纬, 张甜, 冯源, 等. SiC MOSFET串联短路动态特性[J]. 电工技术学报, 2021, 36(12): 2446-2458. Zhang Jingwei, Zhang Tian, Feng Yuan, et al.Dynamic characterization assessment on series short-circuit of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2446-2458. [12] Pulvirenti M, Cavallaro D, Salvo L, et al.Wire bonding stress analysis under short-circuit tests for SiC MOSFETs[C]//IEEE International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe), Nuremberg, Germany, 2021: 1-6. [13] Jiang Nan, Li Zilan, Li Chengguo, et al.Bonding wires for power modules: from aluminum to copper[C]//IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 2019: 1-3. [14] Reigosa P D, Wang Huai, Yang Yongheng, et al.Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation[J]. IEEE Transa-ctions on Power Electronics, 2016, 31(10): 7171-7182. [15] Arjmand E, Agyakwa P A, Corfield M R, et al.Predicting lifetime of thick Al wire bonds using signals obtained from ultrasonic generator[J]. IEEE Transactions on Components, Packaging and Manu-facturing Technology, 2016, 6(5): 814-821. [16] Vertyanov D V, Belyakov I A, Timoshenkov S P, et al.Effects of gold-aluminum intermetallic compounds on chip wire bonding interconnections reliability[C]//IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg and Moscow, Russia, 2020: 2216-2220. [17] Kaestle C, Franke J.Comparative analysis of the process window of aluminum and copper wire bonding for power electronics applications[C]//IEEE International Conference on Electronics Packaging (ICEP), Toyama, Japan, 2014: 335-340. [18] Jiang Yingwei, Sun Ronglu, Yu Youmin, et al.Study of 6 mil Cu wire replacing 10-15 mil Al wire for maximizing wire-bonding process on power ICs[J]. IEEE Transactions on Electronics Packaging Manufa-cturing, 2010, 33(2): 135-142. [19] Krebs T, Duch S, Schmitt W, et al.A breakthrough in power electronics reliability: new die attach and wire bonding materials[C]//IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 2013: 1746-1752. [20] 吴义伯, 戴小平, 王彦刚, 等. IGBT功率模块封装中先进互连技术研究进展[J]. 大功率变流技术, 2015(2): 6-11. Wu Yibo, Dai Xiaoping, Wang Yangang, et al.State-of-the-art progress of advanced interconnection technology for IGBT power module packaging[J]. High Power Converter Technology, 2015(2): 6-11. [21] Gras C A, Ida N.Computation of fusing currents in composite conductors[J]. IEEE Transactions on Mag-netics, 2015, 51(3): 1-4. [22] Jung C C, Silber C, Scheible J.Heat generation in bond wires[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2015, 5(10): 1465-1476. [23] Shah M, Rabany A, Campillo J, et al.Temperature rise and fusing current in wire bonds for high power RF applications[C]//IEEE IEEE Intersociety Con-ference on Thermal and Thermomechanical Pheno-mena In Electronic Systems, Las Vegas, USA, 2004: 157-164. [24] Knecht S, Gonzalez B, Sieber K.Fusing current of short aluminum bond wire[C]//IEEE Inter Society Conference on Thermal Phenomena in Electronic Systems, Orlando, USA, 1996: 329-333. [25] Mallik A, Stout R.Simulation methods for predicting fusing current and time for encapsulated wire bonds[J]. IEEE Transactions on Electronics Packaging Manufa-cturing, 2010, 33(4): 255-264. [26] Preece W H. On the heating effects of electric currents[J]. Proceedings of the Royal Society of London, 1883, 36(228): 464-471. [27] Schwartz A, James W H N. Low tension thermal cut-outs[J]. Journal of the Institution of Electrical Engineers, 1095, 35(27): 364-420. [28] Coxon M, Kershner C, McEligot D, et al. Transient current capacities of bond wires in hybrid micro-circuits[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1986, 9(3): 279-285. [29] Loh E.Physical analyses of data on fused-open bond wires[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1983, 6(2): 209-217. [30] Mertol A.Estimation of aluminum and gold bond wire fusing current and fusing time[J]. IEEE Transa-ctions on Components, Packaging, and Manufacturing Technology, 1995, 18(1): 210-214. [31] Nöbauer G T, Moser H.Analytical approach to temperature evaluation in bonding wires and calcu-lation of allowable current[J]. IEEE Transactions on Advanced Packaging, 2000, 23(3): 426-435. [32] Luo Haoze, Iannuzzo F, Baker N, et al.Study of current density influence on bond wire degradation rate in SiC MOSFET modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1622-1632. [33] Hu Keting, Liu Zhigang, Du He, et al.Cost-effective prognostics of IGBT bond wires with consideration of temperature swing[J]. IEEE Transactions on Power Electronics, 2020, 35(7): 6773-6784.