[1] 夏文杰, 刘定新. Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报, 2021, 36(4): 765-776.
Xia Wenjie, Liu Dingxin.Discharge characteristics and bactericidal effect of ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776.
[2] 徐晗, 陈泽煜, 刘定新. 大气压冷等离子体处理水溶液: 液相活性粒子检测方法综述[J]. 电工技术学报, 2020, 35(17): 3561-3582.
Xu Han, Chen Zeyu, Liu Dingxin.Aqueous solutions treated by cold atmospheric plasmas: a review of the detection methods of aqueous reactive species[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3561-3582.
[3] 张迅, 曾华荣, 田承越, 等. 大气压等离子体制备超疏水表面及其防冰抑霜研究[J]. 电工技术学报, 2019, 34(24): 5289-5296.
Zhang Xun, Zeng Huarong, Tian Chengyue, et al.Super-hydrophobic surface prepared by atmospheric-pressure plasma and its anti-icing, anti-frosting performance[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5289-5296.
[4] 詹振宇, 阮浩鸥, 律方成, 等. 等离子体氟化改性环氧树脂及其在C4F7N/CO2混合气体中电气性能研究[J]. 电工技术学报, 2020, 35(8): 1787-1798.
Zhan Zhenyu, Ruan Haoou, Lü Fangcheng, et al.Plasma fluorinated epoxy resin and its insulation properties in C4F7N/CO2 mixed gas[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1787-1798.
[5] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358, 1425.
Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE 2020, 40(4):1339-1358, 1425.
[6] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9.
Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9.
[7] Shao Tao, Wang Ruixue, Zhang Cheng, et al.Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20.
[8] Moore C L, Pencil E J, Hardy R L, et al.NASA's NextSTEP advanced electric propulsion activities[C]// AIAA Propulsion and Energy Forum, Cincinnati, OH, 2018.
[9] 康小录, 张岩. 空间电推进技术应用现状与发展趋势[J].上海航天, 2019, 36(6): 24-34.
Kang Xiaolu, Zhang Yan.Application status and development trend of space electric propulsion technology[J]. Aerospace Shanghai, 2019, 36(6): 24-34.
[10] 康小录, 杭观荣, 朱智春. 霍尔电推进技术的发展与应用[J]. 火箭推进, 2017, 43(1): 8-17, 37.
Kang Xiaolu, Hang Guanrong, Zhu Zhichun.Development and application of Hall electric propulsion technology[J]. Journal of Rocket Propulsion, 2017, 43(1): 8-17, 37.
[11] Raitses Y, Fisch N J.Parametric investigations of a nonconventional Hall thruster[J]. Physics of Plasmas, 2001, 8(5): 2579-2586.
[12] Solbes A, Thomassen K, Vondra R J.Analysis of solid Teflon pulsed plasma thruster[J]. Journal of Spacecraft and Rockets, 1970, 7(12): 1402-1406.
[13] Liebeskind J G, Hanson R K, Cappelli M A.Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen Arcjet plume[J]. Applied Optics, 1993, 32(30): 6117-6127.
[14] 于达仁. 空间电推进原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014: 6-8.
[15] Lawrence T J.Research into resistojet rockets for small satellite applications[R]. Air force Inst of Tech Wright-Pattersonafb Oh, 1998.
[16] Mazouffre S.Electric propulsion for satellites and spacecraft: established technologies and novel approaches[J]. Plasma Sources Science and Technology, 2016, 25(3): 033002.
[17] 王亚楠, 丁卫东, 程乐, 等. 毛细管型脉冲等离子体推力器研究现状综述[J]. 电工技术学报, 2018, 33(22): 5358-5370.
Wang Yanan, Ding Weidong, Cheng Le, et al.A review of the current research situation on capillary based pulsed plasma thruster[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5358-5370.
[18] 朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16): 3504-3511.
Zhu Han, He Xiang, Chen Bingyan, et al.Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511.
[19] Dobkevicius M.Modelling and design of inductively coupled radio frequency gridded ion thrusters with an application to ion beam shepherd type space missions[D]. Southampton: University of Southampton,2017.
[20] Feili D, Loeb H W, Schartner K H, et al.Performance mapping of new ÁN-RITs at Giessen[C]// 29th International Electric Propulsion Conference, Princeton, NJ, USA. 2005, 252.
[21] Walther R, Schaefer M, Freisinger J.Plasma diagnostics of the RF-ion thruster'RIT-10[C]//9th International Electric Propulsion Conference, Bethesda, MD, USA, 1972: 472.
[22] Groh K, Blum O, Rado H, et al.Inert gas radio-frequency thruster RIT 10[C]//14th International Electric Propulsion Conference, Princeton, NJ, USA. 1979: 2100.
[23] Feili D, Di Cara D M, Leiter H J, et al. The µNRIT-4 ion engine: a first step towards a european mini-ion engine system development[C]//30th International Electric Propulsion Conference, Florence, Italy, 2007: 218.
[24] Trudel T A, Bilén S G, Micci M M.Design and performance testing of a 1-cm miniature radio-frequency ion thruster[C]//The 31st International Electric Propulsion Conference, Ann Arbor, MI, USA. 2009, 167: 20-24.
[25] Loeb H W, Schartner K H, Meyer B K, et al.Forty years of Giessen EP-Activities and the recent RIT-microthrusterdevelopment[C]//29th International Electric Propulsion Conference, Princeton, NJ, USA, 2005: 31.
[26] Tsay M, Frongillo J, Zwahlen J.Qualification model development of cubesat RF ion propulsion system BIT-3[C]//Proceedings of 31st InternationalSympo-sium. Space Technology, Matsuyama, Japan, 2017: 59.
[27] 酆惠芬. 15厘米射频离子推力器—“RIT-15”的实验研究[J]. 中国空间科学技术, 1986 (3): 56-67.
Feng Huifen.Experimental study on 15cm Rf ion thruster "RIT-15"[J]. Chinese Space Science and Technology, 1986 (3): 56-67.
[28] 贺建武, 马隆飞, 薛森文, 等. 射频离子微推力器的研究进展[C]//第十二届中国电推进学术研讨会, 哈尔滨, 2016, 1: 72.
[29] Piejak R B, Godyak V A, Alexandrovich B M.A simple analysis of an inductive RF discharge[J]. Plasma Sources Science and Technology, 1992, 1(3): 179.
[30] Vahedi V, Lieberman M A, DiPeso G, et al. Analytic model of power deposition in inductively coupled plasma sources[J]. Journal of Applied Physics, 1995, 78(3): 1446-1458.
[31] 吴辰宸, 孙新锋, 顾左, 等. 射频离子推力器放电与引出特性调节规律仿真与试验研究[J]. 推进技术, 2019, 40(1): 232-240.
Wu Chenchen, Sun Xinfeng, Gu Zuo, et al.Simulation and experimental study on discharge and extraction characteristic regulation of RF ion thruster[J]. Journal of Propulsion Technology, 2019, 40(1): 232-240.
[32] Tsay M M T. Two-dimensional numerical modeling of radio-frequency ion engine discharge[D]. Cambridge, MA: Massachusetts Institute of Technology, 2010.
[33] Takao Y, Eriguchi K, Ono K.Two-dimensional particle-in-cell simulation of a micro RF ion thruster[C]//32nd International Electric Propulsion Conference, Wiesbaden, Germany, 2011: 76.
[34] Takao Y, Kusaba N, Eriguchi K, et al.Two-dimensional particle-in-cell Monte Carlo simulation of a miniature inductively coupled plasma source[J]. Journal of Applied Physics, 2010, 108(9): 211.
[35] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733.
[36] Lieberman M A, Lichtenberg A J.Principles of plasma discharges and materials processing[M]. New York: John Wiley & Sons, 2005.
[37] 菅井秀郎. 等离子体电子工程学[M]. 张海波, 译. 北京:科学出版社, 2002.
[38] Trojan F, Bussweiler K, Lang H, et al.Development of the radio frequency microthruster RIT 4[C]//9th International Electric Propulsion Conference, Bethesda, MD, USA, 1972: 473.
[39] Farnell C C.Performance and lifetime simulation of ion thruster optics[D]. Fort Collins, CO: Colorado State University, 2007.
[40] 张改玲. 13.56MHz/2MHz柱状感性耦合等离子体特性的对比研究[D]. 大连: 大连理工大学, 2019. |