Multi-Objective Optimization Design of High-Speed Permanent Magnet Machine Based on Multi-Physics Approximate Model
Dai Rui1, Zhang Yue2, Wang Huijun3, Zhang Fengge1, Zhang He4
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. School of Electrical Engineering Shandong University Jinan 250013 China; 3. Beihang University Beijing 100083 China; 4. University of Nottingham-Ningbo Ningbo 315100 China
Abstract:High-speed permanent magnet machine (HSPMM) is attracting more attention due to its advantages of high power density and efficiency, small size, light weight and fast dynamic response. The design of HSPMM is a nonlinear, multi-physics coupled process that makes it difficult to build an accurate mathematical model to optimize design parameters. This paper presents a multi-objective optimization method based on multi-physics approximate model (MPAM). This method uses a MPAM to replace the multi-physics serial design process, and directly calls the MPAM for calculations in the optimization process, which can effectively solve the time-consuming problem and avoid the problem of non-convergence in the process of finite element model call. Finally, a 1.1MW, 18 000r/min HSPMM is produced and related experiments are carried out, the feasibility of the method proposed in this paper for HSPMM optimization is verified.
[1] 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. Zhang Fengge, Du Guanghui, Wang Tianyu, et al.Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. [2] 董剑宁, 黄允凯, 金龙, 等. 高速永磁电机设计与分析技术综述[J]. 中国电机工程学报, 2014, 34(27): 4640-4653. Dong Jianning, Huang Yunkai, Jin Long, et al.Review on high speed permanent magnet machines including design and analysis technologies[J]. Proceedings of the CSEE, 2014, 34(27): 4640-4653. [3] Shen Jianxin, Qin Xuefei, Wang Yunchong.High-speed permanent magnet electrical machines—applications, key issues and challenges[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 23-33. [4] Du Guanghui, Xu Wei, Zhu Jianguo, et al.Power loss and thermal analysis for high-power high-speed permanent magnet machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2722-2733. [5] 沈建新, 韩婷, 尧磊, 等. 提高永磁体电阻率对降低高速永磁交流电机转子涡流损耗的有效性分析[J]. 电工技术学报, 2020, 35(9): 2074-2078. Shen Jianxin, Han Ting, Yao Lei, et al.Is higher resistivity of magnet beneficial to reduce rotor eddy current loss in high-speed permanent magnets AC machines?[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2074-2078. [6] Du Guanghui, Huang Na, Zhao Yanyun, et al.Comprehensive sensitivity analysis and multiphysics optimization of the rotor for a high speed permanent magnet machine[J]. IEEE Transactions on Energy Conversion, 2021, 36(1): 358-367. [7] 巩磊, 杨智, 祝长生, 等. 基于极性切换自适应陷波器的磁悬浮高速电机刚性转子自动平衡[J]. 电工技术学报, 2020, 35(7): 1410-1421. Gong Lei, Yang Zhi, Zhu Changsheng, et al.Automatic balancing for rigid rotor of magnetically levitated high-speed motors based on adaptive Notch filter with polarity switching[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1410-1421. [8] Huang Ziyuan, Fang Jiancheng.Multiphysics design and optimization of high-speed permanent-magnet electrical machines for air blower applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2766-2774. [9] Du Guanghui, Zhou Qixun, Liu Shulin, et al.Multiphysics design and multiobjective optimization for high-speed permanent magnet machines[J]. IEEE Transactions on Transportation Electrification, 2020, 6(3): 1084-1092. [10] Lee T W, Hong D K, Jung T U.High-speed, high-power motor design for a four-legged robot actuator optimized using the weighted sum and response surface methods[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 224-231. [11] 张邦富, 程明, 王飒飒, 等. 基于改进型代理模型优化算法的磁通切换永磁直线电机优化设计[J]. 电工技术学报, 2020, 35(5): 1013-1021. Zhang Bangfu, Cheng Ming, Wang Sasa, et al.Optimal design of flux-switching permanent magnet linear machine based on improved surrogate-based optimization algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1013-1021. [12] Son J C, Ahn J M, Lim J, et al.Optimal design of PMa-SynRM for electric vehicles exploiting adaptive-sampling kriging algorithm[J]. IEEE Access, 9: 41174-41183. [13] Bu Jianguo, Zhou Ming, Lan Xudong, et al.Optimization for airgap flux density waveform of flywheel motor using NSGA-2 and kriging model based on MaxPro design[J]. IEEE Transactions on Magnetics, 2017, 53(8): 1-7. [14] Uzhegov N, Kurvinen E, Nerg J, et al.Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 784-795. [15] Zhang Fengge, Dai Rui, Liu Guangwei, et al.Design of HSIPMM based on multi‐physics fields[J]. IET Electric Power Applications, 2018, 12(8): 1098-1103. [16] 李祥林, 李金阳, 杨光勇, 等. 电励磁双定子场调制电机的多目标优化设计分析[J]. 电工技术学报, 2020, 35(5): 972-982. Li Xianglin, Li Jinyang, Yang Guangyong, et al.Multi-objective optimization analysis of electric-excitation double-stator field-modulated machine[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 972-982. [17] 赵玫, 于帅, 邹海林, 等. 聚磁式横向磁通永磁直线电机的多目标优化[J]. 电工技术学报, 2021, 36(17): 3730-3740. Zhao Mei, Yu Shuai, Zou Hailin, et al.Multi-objective optimization of transverse flux permanent magnet linear machine with the concentrated flux mover[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3730-3740. [18] Parnianifard A, Azfanizam A S, Ariffin M K A, et al. Kriging-assisted robust black-box simulation optimization in direct speed control of DC motor under uncertainty[J]. IEEE Transactions on Magnetics, 2018, 54(7): 1-10. [19] 曹永娟, 冯亮亮, 毛瑞, 等. 轴向磁场永磁记忆电机多目标分层优化设计[J]. 中国电机工程学报, 2021, 41(6): 1983-1992. Cao Yongjuan, Feng Liangliang, Mao Rui, et al.Multi-objective stratified optimization design of axial-flux permanent magnet memory motor[J]. Proceedings of the CSEE, 2021, 41(6): 1983-1992. [20] Wu Shaopeng, Huang Xiaojian, Tian Chenchen, et al.Multi-physical field optimization analysis of high-speed permanent magnet synchronous motor based on NSGA-II algorithm[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-6.