1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electrical Power University Beijing 102206 China; 2. NCEPU (Yantai) Power Semiconductor Technology Research Institute Co. Ltd Yantai 264006 China
摘要 SiC MOSFET凭借其优异的电热特性,正逐渐投入市场,长期运行其可靠性成为关注的重点,功率循环试验是考核器件可靠性最重要的老化试验。MOSFET具有三种导通模式,分别对应三种不同的功率循环测试方法。为探究和对比SiC MOSFET在不同老化试验方法下的失效机理和失效表征参数的变化规律,对其在不同导通模式下进行功率循环试验,基于不同导通模式下的特性分析,重点对比正向MOSFET模式和体二极管模式。SiC MOSFET中的界面陷阱会造成阈值电压漂移,为此提出一种判断准则以及相应的功率循环试验方法,可以将阈值电压漂移对试验结果的影响最小化,并在老化试验过程中实现结温、通态压降和热阻的在线测量。结果表明,在两种模式下失效方式均为键合线老化,但是老化后的电热反馈机制不同,造成其退化规律和寿命不同,相同热力条件下体二极管模式下的寿命约为正向MOSFET模式下的两倍。
Abstract:SiC MOSFETs are gradually entering the market due to their excellent electrothermal characteristics, and their long-term reliability has become the focus of attention. The power cycling test is the most important aging test for device reliability assessment. MOSFET has three conduction modes corresponding to three different power cycling test methods. To study and compare the failure mechanism and failure parameters evolution of SiC MOSFET under different aging test methods, the power cycling tests were carried out under different modes, focusing on forward MOSFET mode and body diode mode. Since the interface trap in the SiC MOSFET can cause the threshold voltage drift, a judgment criterion and a corresponding power cycling test method were proposed to minimize the influence of the threshold voltage drift on the test result. The on-line measurement of junction temperature, on-state voltage drop and thermal resistance during the test were achieved. The results show that the main failure mode in both modes is bond wire fatigue, but the electrothermal feedback mechanism after bonding wire fatigue is different, resulting in different degradation laws and lifespan. The life in diode mode is about twice that in the forward MOSFET mode under the same thermal conditions.
陈杰, 邓二平, 赵子轩, 吴宇轩, 黄永章. 不同老化试验方法下SiC MOSFET失效机理分析[J]. 电工技术学报, 2020, 35(24): 5105-5114.
Chen Jie, Deng Erping, Zhao Zixuan, Wu Yuxuan, Huang Yongzhang. Failure Mechanism Analysis of SiC MOSFET under Different Aging Test Methods. Transactions of China Electrotechnical Society, 2020, 35(24): 5105-5114.
[1] 柯俊吉, 赵志斌, 谢宗奎, 等. 考虑寄生参数影响的碳化硅MOSFET开关暂态分析模型[J]. 电工技术学报, 2018, 33(8): 1762-1774. Ke Junji, Zhao Zhibin, Xie Zongkui, et al.Analytical switching transient model for silicon carbide MOSFET under the influence of parasitic para- meters[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1762-1774. [2] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 703-716. [3] 周林, 李寒江, 解宝, 等. SiC MOSFET的Saber建模及其在光伏并网逆变器中的应用和分析[J]. 电工技术学报, 2019, 34(20): 4251-4263. Zhou Lin, Li Hanjiang, Xie Bao, et al.Saber modeling of SiC MOSFET and its application and analysis in photovoltaic grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4251-4263. [4] Sheng Kuang.Maximum junction temperatures of SiC power devices[J]. IEEE Transactions on Elec- tronic Devices, 2009, 56(2): 337-342. [5] Qi Feng, Wang Miao, Xu Longya.Investigation and review of challenges in a high temperature 30kVA 3-phase inverter using SiC MOSFETs[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2483-2491. [6] Herold C, Schaefer M, Sauerland F, et al.Power cycling capability of modules with SiC-diodes[C]// International Conference on Integrated Power Systems, Nuremberg, Germany, 2014. [7] Hu Borong, Gonzalez J O, Li Ran, et al.Failure and reliability analysis of a SiC power module based on stress comparison to a Si device[J]. IEEE Transa- ctions on Device and Materials Reliability, 2017, 17(4): 727-737. [8] 张经纬, 邓二平, 赵志斌, 等. 压接型IGBT器件单芯片子模组疲劳失效的仿真[J]. 电工技术学报, 2018, 33(18): 4277-4285. Zhang Jingwei, Deng Erping, Zhao Zhibin, et al.Simulation on fatigue failure of single IGBT chip module of press-pack IGBTs[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4277-4285. [9] Herold C, Sun Jian, Seidel P, et al.Power cycling methods for SiC MOSFETs[C]//29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 2017: 367-370. [10] Schwabe C, Seidel P, Lutz J.Power cycling capability of silicon low-voltage MOSFETs under different operation conditions[C]//31th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Shanghai, China, 2019. [11] European Center for Power Electronics. AQG 324 qualification of power modules for use in power electronics converter units (PCUs) in motor vehicles[S]. Nuremberg, Germany: ECPE Working Group, 2018. [12] 周郁明, 蒋保国, 刘航志, 等. 包含SiC/SiO2界面电荷的SiC MOSFET的SPICE模型[J]. 中国电机工程学报, 2019, 39(19): 5604-5612. Zhou Yuming, Jiang Baoguo, Liu Hangzhi, et al.SPICE model of SiC MOSFET including the trapped charge at SiC/SiO2 interface[J]. Proceedings of the CSEE, 2019, 39(19): 5604-5612. [13] 李辉, 黄樟坚, 廖兴林, 等. 一种抑制SiC MOSFET桥臂串扰的改进门极驱动设计[J]. 电工技术学报, 2019, 34(2): 275-285. Li Hui, Huang Zhangjian, Liao Xinglin, et al.An improved SiC MOSFET gate driver design for crosstalk suppression in a phase-leg configuration[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 275-285. [14] Luo Haoze, Baker N, Iannuzzo F, et al. Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules[J]. Microelectronics Reliability, 2017, 76-77: 415-419. [15] Herold C, Franke J, Bhojani R, et al.Requirements in power cycling for precise lifetime estimation[J]. Microelectronics Reliability, 2016, 58: 82-89. [16] Zeng Guang, Cao Haiyang, Chen Weinan, et al.Difference in device temperature determination using pn-junction forward voltage and gate threshold voltage[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2781-2793. [17] Schmidt R, Werner R, Casady J, et al.Power cycle testing of sintered SiC-MOSFETs[C]//Power Conver- sion and Intelligent Motion (PCIM) Europe, Nuremberg, Germany, 2017: 694-701. [18] Herold C, Franke J, Bhojani R, et al.Methods for virtual junction temperature measurement respecting internal semiconductor processes[C]//27th Inter- national Symposium on Power Semiconductor Devices & IC's (ISPSD), Hong Kong, China, 2015: 325-328. [19] 邓二平, 陈杰, 赵雨山, 等. 90kW/3000A高压大功率IGBT器件功率循环测试装备研制[J]. 半导体技术, 2019, 44(3):70-78. Deng Erping, Chen Jie, Zhao Yushan, et al.90kW/ 3000A power cycling equipment for high voltage and high power IGBT modules[J]. Semiconductor Tech- nology, 2019, 44(3): 70-78. [20] Lelis A J, Green R, Habersat D B, et al.Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323. [21] Blackburn D L, Oettinger F F.Transient thermal response measurements of power transistors[J]. IEEE Transactions on Industrial Electronics and Control Instrumentation, 1975, 22(2): 134-141. [22] 黄涛, 陈民铀, 赖伟, 等. 计及疲劳累积及健康状态的风电变流器可靠性评估模型[J]. 电工技术学报, 2018, 33(20): 4845-4854. Huang Tao, Chen Minyou, Lai Wei, et al.Reliability evaluation model of wind power converter con- sidering fatigue accumulation and health status[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4845-4854. [23] Zeng Guang, Borucki L, Wenzel O, et al.First results of development of a lifetime model for transfer molded discrete power devices[C]//Power Conversion and Intelligent Motion (PCIM) Europe 2018, Nuremberg, Germany, 2018: 706-713.