Experiment of Effect of Ammonia on Degradation of Sulfur Hexafluoride by Dielectric Barrier Discharge
Li Yalong1, Zhang Xiaoxing1, 2, 3, Cui Zhaolun1, Xiao Hanyan2, Zhang Guozhi1
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System Hubei University of Technology Wuhan 430068 China; 3. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;
Abstract:With the extensive use of SF6 in the power industry, the SF6 emission from gas- insulated equipment has also increased dramatically, and untreated SF6 emission has an adverse impact on the environment. Therefore, it is important to deal with SF6 waste gas. In this paper, based on the dielectric barrier discharge (DBD) plasma technology, SF6 was degraded under the synergistic effect of NH3. Studies have shown that: NH3 can promote the decomposition process of SF6, and improve the degradation rate efficiency (DRE) and energy yield (EY). NH3 and SF6 show the best synergistic effect when the concentration ratio is 11, and the input power of 90W can make the 2% SF6 decomposed 97.5% at a flow rate of 50mL/min. At the same time, with NH3 addition, SF6 is decomposed more thoroughly, and the solid states S element,[NH4]2SO4, NH4F and NH4HF precipitate. Gas products mainly include SiF4, SiH4, SO2F2, SO2, SOF4, SOF2, S2F10, SF4 and nitrogen oxides (NOx).
李亚龙, 张晓星, 崔兆仑, 肖焓艳, 张国治. NH3对DBD降解SF6影响的试验研究[J]. 电工技术学报, 2019, 34(24): 5262-5269.
Li Yalong, Zhang Xiaoxing, Cui Zhaolun, Xiao Hanyan, Zhang Guozhi. Experiment of Effect of Ammonia on Degradation of Sulfur Hexafluoride by Dielectric Barrier Discharge. Transactions of China Electrotechnical Society, 2019, 34(24): 5262-5269.
[1] 赵明月, 林涛, 颜湘莲, 等. 基于氧同位素示踪法的电晕放电中H2O和O2对SF6分解气体形成的影响[J]. 电工技术学报, 2018, 33(20): 4722-4728. Zhao Mingyue, Lin Tao, Yan Xianglian, et al.Influence of trace H2O and O2 on SF6 decomposition characteristics under corona discharge based on oxygen isotope tracer[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4722-4728. [2] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [3] 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. Tang Nian, Qiao Shengya, Li Li, et al.Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. [4] Sulbaek Andersen M P, Kyte M, Andersen S T, et al. Atmospheric chemistry of (CF3)2CF-CN: a replace- ment compound for the most potent industrial greenhouse gas, SF6[J].Environmental Science & Technology, 2017, 51(3): 1321-1329. [5] 杨师斌. 六氟化硫气体的危害与预防[J]. 重庆工商大学学报(自然科学版), 2009, 26(1): 22-26. Yang Shibin.The harm and prevention of sulfur hexafluoride gas[J]. Journal of Chongqing Tech- nology and Business University (Natural Science Edition), 2009, 26(1): 22-26. [6] Matsui R, Cvitkovitch D.History of atmospheric SF6 from 1973 to 2008[J]. Atmospheric Chemistry & Physics, 2010, 10(21): 10305-10320. [7] 刘英卫, 钟世强, 祁炯, 等. 六氟化硫气体回收处理技术及设备[J]. 电力设备, 2008(8): 14-17. Liu Yingwei, Zhong Shiqiang, Qi Jiong, et al.Sulfur hexafluoride gas recycling technology and equipment[J]. Electric Power Equipment, 2008(8): 14-17. [8] Huang Li, Gu Dinghong, Yang Longyu, et al.Photoreductive degradation of sulfur hexafluoride in the presence of styrene[J]. Journal of Enviromental Science, 2008, 20(2): 183-188. [9] Song Xiaoxiao, Liu Xingyang, Ye Zhaolian, et al.Photodegradation of SF6 on polyisoprene surface: implication on elimination of toxic byproducts[J]. Journal of Hazardous Materials, 2009, 168(1): 493-500. [10] Yamada Y, Tamura H, Takeda D.Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices[J]. Journal of Chemical Physics, 2011, 134(10): 104302. [11] Kashiwagi D, Takai A, Takubo T, et al.Metal phosphate catalysts effective for degradation of sulfur hexafluoride[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 632-640. [12] Kashiwagi D, Takai A, Takubo T, et al.Catalytic activity of rare earth phosphates for SF6 decom- position and promotion effects of rare earths added into AlPO4[J]. Journal of Colloid & Interface Science, 2009, 332(1): 136-144. [13] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. Li Heping, Yu Daren, Sun Wenting, et al.State- of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. [14] Wang Yafend, Shih Mingliang, Tsai C, et al.Total toxicity equivalents emissions of SF6, CHF3 and CCl2F2 decomposed in a RF plasma environment[J]. Chemo- sphere, 2006, 62(10): 1681-1688. [15] Radoiu M, Hussain S.Microwave plasma removal of sulphur hexafluoride[J]. Journal of Hazardous Materials, 2009, 164(1): 39-45. [16] Rosocha L A, Kim Y, Anderson G K, et al.Decom- position of ethane in atmospheric-pressure dielectric- barrier discharges: experiments[J]. IEEE Transa- ctions on Plasma Science, 2006, 34(6): 2526-2531. [17] Lee H M, Chang M B, Wu K Y.Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. [18] Zhuang Quan, Clements B, Mcfarlan A, et al.Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF6) using a dielectric barrier discharge (DBD) plasma[J]. Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35. [19] Zhang Renxi, Wang Jingting, Cao Xu, et al.Decom- position of potent greenhouse gases SF6, CF4 and SF5CF3 by dielectric barrier discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. [20] Kim J H, Cho C H, Shin D H, et al.Abatement of fluorinated compounds using a 2.45GHz microwave plasma torch with a reverse vortex plasma reactor[J]. Journal of Hazardous Materials, 2015, 294: 41-46. [21] Zhang Xiaoxing, Xiao Hanyan, Hu Xiongxiong, et al.Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma[J]. Aip Advances, 2016, 6(11): 115005. [22] Cheng He, Liu Xin, Lu Xinpei, et al.Numerical study on propagation mechanism and bio-medicine appli- cations of plasma jet[J]. High Voltage, 2016, 1(2): 62-73. [23] 张晓星, 胡雄雄, 肖焓艳. 介质阻挡放电等离子体降解SF6的实验与仿真研究[J]. 中国电机工程学报, 2017, 37(8): 2455-2464. Zhang Xiaoxing, Hu Xiongxiong, Xiao Hanyan.Experimental and simulation study on degradation of SF6 by dielectric barrier discharge plasma[J]. Proceedings of the CSEE, 2017, 37(8): 2455-2464. [24] 肖焓艳, 张晓星, 肖淞, 等. 环境介质对介质阻挡放电降解SF6影响的实验[J]. 电工技术学报, 2017, 32(20): 20-27. Xiao Hanyan, Zhang Xiaoxing, Xiao Song, et al.Experiment of effects of ambient medium on sulfur hexafluoride degra-dation for a double dielectric barrier discharge reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 20-27. [25] Xiao Hanyan, Zhang Xiaoxiong, Hu Xiongxiong, et al.Experimental and simulation analysis on by- products of treatment of SF6 using dielectric barrier discharge[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3): 1617-1624. [26] Zhang Jun, Zhang Yunpeng, Lei Yinkai, et al.Photocatalytic and degradation mechanisms of anatase TiO2: a HRTEM study[J]. Catalysis Science & Technology, 2011, 1(2): 273-278. [27] Muniz-Miranda M, Muniz-Miranda F, Caporali S.SERS and DFT study of copper surfaces coated with corrosion inhibitor[J]. Beilstein Journal of Nanote- chnology, 2014, 5: 2489-2497.