Density Functional Theory Study of SF6 Decomposed Products Over ZnO (0001) with Gas Sensing Properties
Wang Dibo1, Chen Dachang2, Pi Shoumiao2, Zhang Xiaoxing2,3, Tang Ju2,4
1. Electric Power Research Institute China Southern Power Grid Guangzhou 510663 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 3. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System Hubei University of Technology Wuhan 430068 China; 4. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China
Abstract:In this work, the first-principles with density functional theory was adopted to investigate the adsorption and gas sensing properties of ZnO (0001) surface toward four types of typical SF6 decomposed products (SO2, SOF2, SO2F2 and H2S). The adsorption energy, adsorption distance, charge transfer, charge density difference (CDD), electron localization function (ELF) were calculated and compared. And also, the chemical interactions between the adsorbed gas molecule and the surface were analyzed based on the density of states (DOS) results. The results show that all these four types of molecules bring strong chemisorption behavior. Only SO2 remains its original structure but other three types of molecules all break apart with different extent. The S-F bonds in SOF2 and SO2F2 and the S-H bond rupture during the adsorption and the bond rupture processes do not show obvious energy barrier and are spontaneous reactions. Although the results in this study show that the ZnO (0001) surface exhibits strong chemical interactions and gas sensing properties to these four types of SF6 decomposed products, the large adsorption energy and the decomposition of adsorbed gas molecule bring relatively weak recovery properties. This study can provide theoretical basis and guidance for ZnO and its modified material based gas sensor to detect SF6 decomposed products.
王邸博, 陈达畅, 皮守苗, 张晓星, 唐炬. 基于密度泛函理论的SF6分解组分在ZnO(0001)吸附及传感性能研究[J]. 电工技术学报, 2020, 35(7): 1592-1602.
Wang Dibo, Chen Dachang, Pi Shoumiao, Zhang Xiaoxing, Tang Ju. Density Functional Theory Study of SF6 Decomposed Products Over ZnO (0001) with Gas Sensing Properties. Transactions of China Electrotechnical Society, 2020, 35(7): 1592-1602.
[1] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54. Tang Ju, Yang Dong, Zeng Fuping, et al.Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54. [2] 乔胜亚, 周文俊, 王勇, 等. 典型吸附剂对GIS固体绝缘介质放电特征气体变化规律影响[J]. 电工技术学报, 2018, 33(19): 4627-4635. Qiao Shengya, Zhou Wenjun, Wang Yong, et al.Effect of typical adsorbents on gas change characteristics of gas insulated switchgear solid insulation dielectric[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4627-4635. [3] 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. Tang Nian, Qiao Shengya, Li Li, et al.Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. [4] 任敬国, 辜超, 师伟, 等. 1100kV GIS设备主回路绝缘试验电气参量估算方法研究[J]. 电力系统保护与控制, 2018, 46(3): 103-109. Ren Jingguo, Gu Chao, Shi Wei, et al.Research on evaluation method of electric parameters of 1100 kV GIS main circuit insulation test[J]. Power System Protection and Control, 2018, 46(3):103-109. [5] Wenderich K, Mul GMethods.Mechanism, and applications of photodeposition in photocatalysis: a review[J]. Chemical Reviews, 2016, 116(23): 14587-14619. [6] Zhang Peng, Wu Jiang, Zhang Ting, et al.Perovskite solar cells with ZnO electron-transporting materials[J]. Advanced Materials, 2018, 30(3): 1703737. [7] Dral A P, Johan E.2D metal oxide nanoflakes for sensing applications: review and perspective[J]. Sensors and Actuators B: Chemical, 2018, DOI: 10.1016/j.snb.2018.05.157. [8] Zhu Ling,Zeng Wen.Room-temperature gas sensing of ZnO-based gas sensor: a review[J]. Sensors and Actuators A: Physical, 2017, DOI: 10.1016/j.snb.2017. 10.021. [9] Wang Caihong, Chu Xiangfeng, Wu Mingmei.Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods[J]. Sensors and Actuators B: Chemical, 2006, 113(1): 320-323. [10] Hosseini Z S, Mortezaali A.Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical, 2015, 207: 865-871. [11] Wang Dawei, Wang Xiaohua, Yang Aijun, et al.A first principles theoretical study of the adsorption of SF6 decomposition gases on a cassiterite (110) surface[J]. Materials Chemistry and Physics, 2018, 212: 453-460. [12] 张晓星, 董星辰, 陈秦川. 锐钛矿型 (101) 晶面吸附SF6局部放电分解组分的气敏机理分析[J]. 电工技术学报, 2017, 32(3): 200-209. Zhang Xiaoxing, Dong Xingchen, Chen Qinchuan.Gas sensing mechaism analysis of SF6 decomposed gases adsorption on anatase (101) surface under partial discharge[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 200-209. [13] 张晓星, 方佳妮, 崔豪, 等. 碳纳米管传感器吸附机理及对SF6分解组分检测应用综[J]. 中国电机工程学报, 2018, 38(16): 4926-4941. Zhang Xiaoxing, Fang Jiani, Cui Hao, et al.Review: adsorption principle and application of carbon nanotubes to SF6 decomposition components[J]. Proceedings of the CSEE, 2018, 38(16): 4926-4941. [14] 张晓星, 黄蓉, 喻蕾, 等. 基于第一性原理的金掺杂石墨烯对SF6分解组分的气敏分析[J]. 中国电机工程学报, 2017, 37(6): 1828-1834. Zhang Xiaoxing, Huang Rong, Yu Lei, et al.Gas sensing analysis properties of Au-Graphene to SF6 decomposition products based on a first principle study[J]. Proceedings of the CSEE, 2017, 37(6): 1828-1834. [15] Xu Y N, Ching W Y.Electronic, optical, and structural properties of some wurtzite crystals[J]. Physical Review B, 1993, 48(7): 4335-4351. [16] Diebold U, Koplitz L V, Dulub O.Atomic-scale properties of low-index ZnO surfaces[J]. Applied Surface Science, 2004, 37(1-4): 336-342. [17] Tang Qianlin, Luo Qinghong.Adsorption of CO2 at ZnO: a surface structure effect from DFT+U calculations[J]. The Journal of Physical Chemistry C, 2013, 117(44): 22954-22966. [18] Saputro A G, Agusta M K, Yuliarto B, et al.Selectivity of CO and NO adsorption on ZnO (0002) surfaces: a DFT investigation[J]. Applied Surface Science, 2017, 410: 373-382. [19] Delley B.From molecules to solids with the DMol3 approach[J]. The Journal of Chemical Physics, 2000, 113(18): 7756-7764. [20] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865. [21] Grimme S.Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [22] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 44(2): https://doi.org/10.1103/PhysRevB.16.1746. [23] Hirshfeld F L.Bonded-atom fragments for describing molecular charge densities[J]. Theoretica Chimica Acta, 1977, 44(2): 129-138. [24] Fu Yuwei, Yang Aijun, Wang Xiaohua, et al.Theoretical study of the neutral decomposition of SF6 in the presence of H2O and O2 in discharges in power equipment[J]. Physics D: Applied Physics, 2016, 49(38): 385203. [25] Zhang Xiaoxing, Chen Dachang, Cui Hao, et al.Understanding of SF6 decompositions adsorbed on cobalt-doped SWCNT: a DFT study[J]. Applied Surface Science, 2017, 420: 371-382. [26] Kisi E H, Elcombe M M.u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction[J].Acta Crystallographica Section C: Structural Chemistry, 1989, 45(12): 1867-1870. [27] O'Toole N J, Streltsov V A. Synchrotron X-ray analysis of the electron density in COF2 and ZnF2[J]. Acta Crystallographica Section B: Structural Science, 2001, 57(2): 128-135. [28] Yin Gaiyu, Ding Kaining, Li Junqian.The first-principles calculations of H2S adsorption and decomposition on the ZnO (0001) surface[J]. Chinese Journal of Structural Chemistry, 2010, 29(8): 1139-1146. [29] Rothenberg S, Schaefer III H F. Theoretical study of SO2 molecular properties[J]. The Journal of Chemical Physics, 1970, 53(8): 3014-3019.