Influence of SF6 Concentration in SF6/N2 Gas Mixture on Decomposition Products Analysis Based on Photoacoustic Spectrometry Detection
Li Kang1, Ma Fengxiang2, Zhu Hui3, Zhu Feng2, Han Dong1,4
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China 2. State Grid Anhui Electric Power Co. Ltd Hefei 230022 China 3. Henan Relations Co. Ltd Zhengzhou 450001 China 4. University of Chinese Academy of Sciences Beijing 100190 China
Abstract:Due to the balanced performance of various aspects, SF6/N2 gas mixture is one of the best alternatives to SF6 gas. Many power apparatuses have adopted SF6/N2 gas mixture as insulation medium. Therefore, the maintainers of the power company began to pay attention on the detection of the decomposition products of SF6/N2 gas mixture, such as whether the existing photoacoustic instruments can detect the decomposition gas, and how is the detection sensitivity? In view of the above problems this paper analyses the influence of background gas based on the basic principle of photoacoustic spectroscopy in the beginning. It is pointed out that the change of background gas mainly affects the photoacoustic cell constant of photoacoustic spectrometry system. With the decrease of SF6 ratio in mixed gas, the photoacoustic cell constant increases, which is beneficial to gas detection. The ratio of SF6 changed from 100% to 20%, the photoacoustic cell constant increased from 168.7Pa·cm/W to 576.0Pa·cm/W. Then a photoacoustic spectrometry experimental platform was built to compare the minimum detection limits of SO2, CO2, CO, CF4 and SO2F2 under different SF6 mixing ratios. The experimental results are consistent with the theoretical analysis. The smaller the ratio of SF6 gas, the smaller the minimum detection limit and the easier it is to detect. The SF6 ratio changed from 100% to 30%, the minimum detection limit of CO2 in decomposition gas decreased from 0.629 ppm to 0.226 ppm.
李康, 马凤翔, 朱会, 朱峰, 韩冬. 基于光声光谱技术的SF6/N2故障分解气体检测中SF6含量对检测灵敏度的影响[J]. 电工技术学报, 2020, 35(17): 3773-3780.
Li Kang, Ma Fengxiang, Zhu Hui, Zhu Feng, Han Dong. Influence of SF6 Concentration in SF6/N2 Gas Mixture on Decomposition Products Analysis Based on Photoacoustic Spectrometry Detection. Transactions of China Electrotechnical Society, 2020, 35(17): 3773-3780.
[1] 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. Zhang Xiaoxing, Tian Shuangshuang, Xiao Song, et al.A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. [2] 陈晶华. 中压环保型气体绝缘开关设备的设计[J]. 电气技术, 2019, 20(1): 106-108. Chen Jinghua.Design of medium pressure environmental protection type gas insulated switchgear[J]. Electrical Engineering, 2019, 20(1): 106-108. [3] 林林, 陈庆国, 程嵩, 等. 基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J]. 电工技术学报, 2018, 33(18): 4382-4388. Lin Lin, Chen Qingguo, Cheng Song, et al.The analysis of SF6 potential alternative gas dielectric strength based on density functional theory[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4382-4388. [4] Fu Yuwei, Wang Xiaohua, Li Xi, et al. Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)[J]. Aip Advances, 2016, 6(8): 085305-085305-16. [5] 张然, 王珏, 严萍. 应用于直流GIL中低混合比c-C4F8/N2混合气体的绝缘特性[J]. 高电压技术, 2018, 44(8): 2672-2678. Zhang Ran, Wang Jue, Yan Ping.Insulation characteristics of c-C4F8/N2 with less c-C4F8 applied to HVDC-GIL[J]. High Voltage Engineering, 2018, 44(8): 2672-2678. [6] 邓云坤, 马仪, 赵谡, 等. 基于电子输运参数的CF3I及CF3I-N2混合气体绝缘性能分析[J]. 电工技术学报, 2018, 33(7): 1641-1651. Deng Yunkun, Ma Yi, Zhao Su, et al.Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1641-1651. [7] 周安春, 高理迎, 冀肖彤, 等. SF6/N2混合气体用于GIS母线的研究与应用[J]. 电网技术, 2018, 42(10): 3429-3435. Zhou Anchun, Gao Liying, Ji Xiaotong, et al.Research and application of SF6/N2 mixed gas used in GIS bus[J]. Power System Technology, 2018, 42(10): 3429-3435. [8] 邓军波, 薛建议, 张冠军, 等. SF_6/N_2混合气体中沿面放电实验研究的现状与进展[J]. 高电压技术, 2016, 42(4): 1190-1198. Deng Junbo, Xue Jianyi, Zhang Guanjun, et al.Current status of experimental research on surface discharge in SF6/N2 mixture gas[J]. High Voltage Engineering, 2016, 42(4): 1190-1198. [9] 周远翔, 刘睿, 张云霄, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Liu Rui, Zhang Yunxiao, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [10] 应启良. 我国电力电缆技术引进及面向21 世纪技术发展的期望[J]. 电线电缆, 1999, 42(1): 2-12. Ying Qiliang.China’s power electric cable’s technology import andexpectation towards the 21st century[J]. Electric Wire & Cable, 1999, 42(1): 2-12. [11] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J].电工技术学报, 2016, 31(20): 41-54. Tang Ju, Yang Dong, Zeng Fuping, et al.Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed components analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 41-54 [12] 赵明月, 林涛, 颜湘莲, 等. 基于氧同位素示踪法的电晕放电中H2O和O2对SF6分解气体形成的影响[J]. 电工技术学报, 2018, 33(20): 4722-4728. Zhao Mingyue, Lin Tao, Yan Xianglian, et al.Influence of trace H2O and O2 on SF6 decomposition characteristics under corona discharge based on oxygen isotope tracer[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4722-4728. [13] 林涛, 韩冬, 钟海峰, 等. 工频交流电晕放电下SF6气体分解物形成的影响因素[J].电工技术学报, 2014, 29(2): 219-225. Lin Tao, Han Dong, Zhong Haifeng, et al.Influence factors of formation of decomposition by-products of SF6 in 50Hz AC corona discharge[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 219-225. [14] Zhang Xiaoxing, Zhang Yin, Tang Ju, et al.Optical technology for detecting the decomposition products of SF6: a review[J]. Optical Engineering, 2018, 57(11): 110901. [15] 张英, 张晓星, 李军卫, 等. 基于光声光谱法的SF6气体分解组分在线监测技术[J]. 高电压技术, 2016, 42(9): 2995-3002. Zhang Ying, Zhang Xiaoxing, Li Junwei, et al.On-line Monitoring technology of SF6 gas decomposition components based on photoacoustic spectroscopy[J]. High Voltage Engineering, 2016, 42(9): 2995-3002. [16] Lin Tao, Zhang Guoqiang, Qiu Zongjia, et al.Photoacoustic detection of SF6 decomposition by-products with broadband infrared source[C]//2014 IEEE International Conference on Power System Technology, Chengdu, China, 2014:1541-1546. [17] Cai Wei, Tang Ju, Cheng Lin, et al.Detection of SF6 decomposition components under partial discharge by photoacoustic spectrometry and its temperature characteristic[J]. IEEE Transactions on Instrumentation & Measurement, 2016, 65(6): 1343-1351. [18] Yin Xukun, Dong Lei, Wu Hongpeng, et al.Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J]. Applied Physics Letters, 2017, 111(3): 031109. [19] Yin Xukun, Dong Lei, Wu Honpeng, et al.Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express, 2017, 25(26): 32581. [20] 梁智权. 流体力学[M]. 重庆:重庆大学出版社,2002.