Abstract:Due to the greenhouse effect of SF6, more and more scholars are paying attention to the application of SF6/N2 mixed gas as the insulating medium in DC GIL. The surface defect is one of the common defects of GIL, so it is of great significance to study the partial discharge characteristics of SF6/N2 mixed gas under DC voltage. In this paper, the discharge signal is statistically counted by the pulse current method, and the initial partial discharge characteristics and the statistical characteristics of the discharge development stage of the mixed gas are studied. The results show that, when the pressure is in the range of 0.1~0.8MPa, as the pressure increases, the partial discharge inception voltage (PDIV) and the synergistic effect of the mixed gas increase, while the maximum discharge decreases. As SF6 content decreases, the PDIV increases, the sensitivity of PDIV growth rate to SF6 gas content decreases, and the synergistic effect of the mixed gas decreases. When the applied electric field is in the range of PDIV to 40kV, the average discharge amount increases in the low-pressure region with the increase of the applied electric field, and the increase in the high-voltage region with the applied electric field remains unchanged. The discharge repetition rate of the 50% SF6 mixed gas in the high-pressure region is higher than that in the low-voltage region, and the formation of discharge is suppressed as the discharge develops. The surface discharge has a polar effect, and the negative PDIV is smaller than the positive PDIV.
侯志强, 郭若琛, 李军浩. 直流电压下SF6/N2混合气体沿面局部放电特性[J]. 电工技术学报, 2020, 35(14): 3087-3096.
Hou Zhiqiang, Guo Ruochen, Li Junhao. Partial Discharge Characteristics of the Surface Discharge in SF6/N2 of the Mixed Gas Under DC Voltage. Transactions of China Electrotechnical Society, 2020, 35(14): 3087-3096.
[1] 王靖瑞, 王健, 倪潇茹, 等. 直流电场下C4F7N/CO2与SF6/N2混合气体中铝质球形自由微粒放电敏感度对比分析[J]. 电工技术学报, 2018, 33(20): 4682-4691. Wang Jingduan, Wang Jian, Ni Xiaoru, et al.Comparative analysis of discharge sensitivity by the free spherical aluminum particle in C4F7N/CO2 and SF6/N2 gas mixtures under DC electric field[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4682-4691. [2] 庞培川, 孙泽明, 张芊, 等. 负极性直流电压作用下SF6气体中极不均匀电场局部放电特性研究[J]. 高电压技术, 2019, 45(4): 1093-1100. Pang Peichuan, Sun Zeming, Zhang Qian, et al.Study on partial discharge characteristics of severe non- uniform electric field in SF6 under negative DC voltage[J]. High Voltage Engineering, 2019, 45(4): 1093-1100. [3] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21. Tang Ju, Pan Cheng, Wang Dibo, et al.Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21. [4] 肖登明, 阎究敦. 气体绝缘输电线路(GIL)的应用及发展[J]. 高电压技术, 2017, 43(3): 17-25. Xiao Dengming, Yan Jiudun.Application and development of gas insulated transmission line (GIL)[J]. High Voltage Engineering, 2017, 43(3): 17-25. [5] 卢毓欣, 韩永霞, 朱志芳, 等. ±1000kV特高压直流换流站绝缘配合[J]. 电工技术学报, 2014, 29(增刊1): 516-523. Lu Yuxin, Han Yongxia, Zhu Zhifang, et al.The insulation and coordination of ±1000kV UHVDC converter station[J]. Transactions of China Electro- technical Society, 2014, 29(S1): 516-523. [6] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian.Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Elec- trotechnical Society, 2015, 30(17): 1-12. [7] 齐波, 张贵新, 李成榕, 等. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术, 2015, 41(5): 1466-1473. Qi Bo, Zhang Guixin, Li Chengrong, et al.Research status and prospect of gas-insulated metal enclosed transmission line[J]. High Voltage Engineering, 2015, 41(5): 1466-1473. [8] 孙秋芹, 罗宸江, 王峰, 等. 直流GIL导体表面金属颗粒跳跃运动特性研究[J]. 电工技术学报, 2018, 33(22): 5206-5216. Sun Qiuqin, Luo Chenjiang, Wang Feng, et al.Jumping characteristics of metal particle on the surface of DC gas insulated transmission line con- ductor[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5206-5216. [9] 张潮海, 韩冬, 李康, 等. SF6替代气体技术及其在GIL中的应用与发展[J]. 高电压技术, 2017, 43(3): 689-698. Zhang Chaohai, Han Dong, Li Kang, et al.SF6 alternative techniques and their applications and prospective developments in gas insulated trans- mission lines[J]. High Voltage Engineering, 2017, 43(3): 689-698. [10] 邓军波, 薛建议, 张冠军, 等. SF6/N2混合气体中沿面放电实验研究的现状与进展[J]. 高电压技术, 2016, 42(4): 1190-1198. Deng Junbo, Xue Jianyi, Zhang Guanjun, et al.Current status of experimental research on surface discharge in SF6/N2 mixture gas[J]. High Voltage Engineering, 2016, 42(4): 1190-1198. [11] 江伟钰. 论《京都议定书》的实施及构建我国绿色 GDP的若干法律问题[J]. 中国地质大学学报: 社会科学版, 2006, 6(1): 88-94. Jiang Weiyu.On the implementation of Kyoto protocol and the law problems of the green GDP in China[J]. Journal of China University of Geosciences: Social Science Edition, 2006, 6(1): 88-94. [12] 李军浩, 韩旭涛, 刘泽辉, 等. 电气设备局部放电检测技术述评[J]. 高电压技术, 2015, 41(8): 2583-2601. Li Junhao, Han Xutao, Liu Zehui, et al.Review on partial discharge measurement technology of elec- trical equipment[J]. High Voltage Engineering, 2015, 41(8): 2583-2601. [13] 邱昌容, 王乃庆. 电工设备局部放电及其测试技术[M]. 北京: 机械工业出版社, 1994. [14] Boggs S A, Stone G C.Fundamental limitations in measurement of corona and partial discharge[J]. IEEE Transactions on Electrical Insulation, 1982, 17(2): 143-150. [15] Kemp I J.Partial discharge plant-monitoring tech- nology: present and future developments[J]. IEEE Proceedings-Science, Measurement and Technology, 1995, 142(1): 4-10. [16] 严璋, 朱德桓. 高电压绝缘技术[M]. 3版. 北京: 中国电力出版社, 2015. [17] Piccin R, Mor A R, Morshuis P, et al.Partial discharge analysis of gas insulated systems at high voltage AC and DC[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(1): 218-228. [18] 唐炬, 佘新, 万凌云, 等. 负极性直流局部放电量与SF6分解过程的关联特性[J]. 中国电机工程学报, 2018, 38(2): 628-636, 693. Tang Ju, She Xin, Wan Lingyun, et al.Correlation characteristics between partial discharge quantity and SF6 decomposition process under negative DC condition[J]. Proceedings of the CSEE, 2018, 38(2): 628-636, 693. [19] 庞培川, 孙泽明, 张芊, 等. 直流电压作用下极不均匀电场中SF6/N2混合气体局部放电起始特性研究[J]. 西安交通大学学报, 2019, 53(4): 44-50. Pang Peichuan, Sun Zeming, Zhang Qian, et al.Partial discharge initial characteristics of extremely inhomogeneous electric field in SF6/N2 mixture under DC high voltage[J]. The Journey of Xi’an Jiaotong University, 2019, 53(4): 44-50. [20] 庞培川, 孙泽明, 张芊, 等. 负极性直流电压作用下SF6气体中极不均匀电场局部放电特性研究[J]. 高电压技术, 2019, 45(4): 1093-1100. Pang Peichuan, Sun Zeming, Zhang Qian, et al.Partial discharge characteristics of severe non- uniform electric field in SF6 under negative DC voltage[J]. High Voltage Engineering, 2019, 45(4): 1093-1100. [21] Yamamoto O, Takuma T, Hamada S, et al.Applying a gas mixture containing c-C4F8 as an insulation medium[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 1075-1081. [22] Hikita M, Ohtsuka S, Okabe S, et al.Insulation characteristics of gas mixtures including perfluoro- carbon gas[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 1015-1022. [23] Christophorou L G, Brunt V J.SF6/N2 mixtures: basic and HV insulation properties[J]. IEEE Transactions on Dielectric and Electrical Insulation, 1995, 2(5): 952-1003. [24] DLT 848.1—200 高压试验装置通用技术文件, 第 1部分: 直流高压发生器[S]. 中国: 武汉. [25] GBT 16927.1—2011 高压试验技术, 第1部分: 一般要义及试验要求BT 16927.1—2011 高压试验技术, 第1部分: 一般要义及试验要求[S]. 中国: 武汉, 2011. [26] 蒋英圣, 姜燕君, 林浩, 等. 同轴场中SF6及SF6/N2混合气体交流击穿特性及导电微粒的影响[J]. 高电压技术, 1988, 14(1): 26-32. Jiang Yingsheng, Jiang Yanjun, Lin Hao, et al.AC breakdown characteristics of SF6 and SF6/N2 mixture and influence of conducting particles[J]. High Voltage Engineering, 1988, 14(1): 26-32. [27] 邱毓昌. GIS装置及其绝缘技术[M]. 北京: 水利电力出版社, 1994. [28] Christophorou L G, Van Brunt R J. SF6/N2 mixtures basic and HV insulation properties[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 1995, 2(5): 952-1003. [29] ASTM-D1868-13 Standard test method for detection and measurement of partial discharge (corona) pulses in evaluation of insulation systems[S]. America, Pennsylvania, 2013. [30] ASTM-3755-14 Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulation materials under direct-voltage stress[S]. America, Pennsylvania, 2013.