Research on Gas Insulated Switchgear PD Detection Antenna Body and Balun Coplanar Flexible Miniaturized Ultra-High Frequency Antenna Sensor
Zhang Guozhi1,2,3, Han Jingqi1, Liu Jianben4, Chen Kang1, Zhang Shuo1
1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment Hubei University of Technology Wuhan 430068 China;
2. State Grid Electric Power Research Institute Wuhan Nanrui Co. Ltd Wuhan 430074 China;
3. School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China;
4. State Key Laboratory of Power Grid Environmental Protection China Electric Power Research Institute Wuhan 430074 China
In view of the high sensitive detection requirements of partial discharge detection for insulation defects of gas-insulated substation (GIS) in substation, the complicated process of built-in installation of the existing UHF antenna sensor with rigid base and the risk of damaging the internal electric field distribution of the equipment after built-in installation. This paper puts forward the research of flexible UHF sensing technology, combines the antenna body with the flexible material, and reduces the volume of the built-in rear antenna on the premise of ensuring the performance of the antenna to meet the requirements, so as to simplify the complex built-in process and the problem of damaging the electric field distribution. In this paper, a flexible UHF spiral antenna sensor is designed. The antenna body is miniaturized by means of sine wave loading and increasing the gap ratio of the antenna body. At the same time, Balun is co-planar with the antenna body, greatly reducing the overall volume of the antenna. The PD detection performance of the antenna was measured by building a GIS typical defect partial discharge simulation experiment platform. The results show that the flexible antenna can effectively detect PD signals under different bending degrees and has a high signal-to-noise ratio.
Firstly, the common Archimedes spiral antenna was combined with the flexible material PI to build the antenna simulation model, and the performance simulation of the unbent antenna and the antenna with different bending degrees was carried out. Through the simulation of antenna voltage standing wave ratio and direction diagram, it can be seen that antenna body bending has little influence on antenna performance. Then, the common Archimedes spiral antenna is loaded in the form of sine wave. In this way, the size of the antenna body can be effectively reduced. The size and diameter of the designed antenna is 150 mm, and the radial distance is reduced by 25 % compared with that without miniaturization. The antenna model can be bent arbitrarily to improve the complicated installation process of the built-in rigid antenna.
But the Archimedes spiral antenna needs impedance matching device Balun, the existence of Balun for the antenna's built-in brings great inconvenience. Therefore, this paper proposes to reduce the overall antenna impedance while greatly reducing the overall antenna volume by co-planar Balun with the antenna body. Through simulation, it can be seen that changing the antenna gap ratio can reduce the antenna VSWR, but there is a problem that the frequency band with VSWR less than 2 is less. Based on this, this paper combines the design idea of exponential gradient Balun, and uses the gradient gap ratio to make the antenna impedance change smoother. Finally, through simulation, it is determined that the gradual gap ratio can make the working frequency band move to the relatively low frequency. Because the UHF radiated by PD signal is mostly in the range of 300 MHz~1.5 GHz, the gradual gap ratio mode is finally determined for the physical antenna.
After the completion of the actual production, the vector network analyzer was used to test the bending standing wave ratio of the antenna. The measured performance was slightly different from the simulation, but the variation trend was basically the same. Through the comparison between the experimental platform and the mature antenna, it can be seen that the flexible antenna can obviously receive partial discharge signals, and PD signals can be detected under different bending degrees. The results show that the antenna can effectively monitor the discharge signal through the experiment of GIS simulation cavity tank.
In this paper, through the research of antenna body and Balun co-planar flexible miniaturized Archimedes antenna sensor, the influence of changing antenna gap ratio on antenna impedance was analyzed. At the same time, the antenna base was changed to PI flexible material, which provided a new idea for the built-in antenna, and the performance of the designed antenna was analyzed and verified through simulation and experiment. Experiments show that the antenna has excellent radiation performance and meets the detection requirements of the built-in antenna.
张国治, 韩景琦, 刘健犇, 陈康, 张硕. GIS局部放电检测天线本体和巴伦共面柔性小型化特高频天线传感器研究[J]. 电工技术学报, 2023, 38(4): 1064-1075.
Zhang Guozhi, Han Jingqi, Liu Jianben, Chen Kang, Zhang Shuo. Research on Gas Insulated Switchgear PD Detection Antenna Body and Balun Coplanar Flexible Miniaturized Ultra-High Frequency Antenna Sensor. Transactions of China Electrotechnical Society, 2023, 38(4): 1064-1075.
[1] 崔景春. 气体绝缘金属封闭开关设备[M]. 北京: 中国电力出版社, 2016.
[2] 纽春萍, 矫璐璐, 王小华, 等. 基于多场耦合的环保型GIS热特性分析[J]. 电工技术学报, 2020, 35(17): 3765-3772.
Niu Chunping, Jiao Lulu, Wang Xiaohua, et al.Thermal characteristics analysis of environmentally friendly GIS based on multi-field coupling[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(17): 3765-3772.
[3] 汪沨, 梁芳蔚, 钟理鹏, 等. 基于X射线短时照射的高压直流GIS/GIL绝缘子表面电荷主动消散方法[J]. 电工技术学报, 2020, 35(14): 3147-3151.
Wang Feng, Liang Fangwei, Zhong Lipeng, et al.Active charge dissipation method for surface charge on the surface of DC GIS/GIL insulator based on short-time X-ray irradiation[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3147-3151.
[4] 张晓星, 任江波, 肖鹏, 等. 检测SF6气体局部放电的多壁碳纳米管薄膜传感器[J]. 中国电机工程学报, 2009, 29(16): 114-118.
Zhang Xiaoxing, Ren Jiangbo, Xiao Peng, et al.Multi-wall carbon nanotube films sensor applied to SF6 PD detection[J]. Proceedings of the CSEE, 2009, 29(16): 114-118.
[5] 张晓星, 吴法清, 铁静, 等. 二氧化钛纳米管气体传感器检测SF6的气体分解组分SO2F2的气敏特性[J]. 高电压技术, 2014, 40(11): 3396-3402.
Zhang Xiaoxing, Wu Faqing, Tie Jing, et al.TiO2 nanotube array sensor for detecting SF6 decom-position component SO2F2[J]. High Voltage Engin-eering, 2014, 40(11): 3396-3402.
[6] 聂洪岩, 张潮海, 顾哲屹, 等. 局部放电条件下干式空心电抗器匝间绝缘的电老化特性研究[J]. 电工技术学报, 2018, 33(13): 3071-3079.
Nie Hongyan, Zhang Chaohai, Gu Zheyi, et al.The research on electrical aging characteristics of turn-to-turn insulation of dry-type air core reactor under partial discharge[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3071-3079.
[7] 鲍永胜, 郝峰杰, 徐建忠, 等. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报, 2016, 31(9): 181-188.
Bao Yongsheng, Hao Fengjie, Xu Jianzhong, et al.Classification feature extraction algorithm for GIS partial discharge pulses[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 181-188.
[8] 李刚, 汪可, 张书琦, 等. 变压器油纸绝缘沿面放电缺陷发展特征及阶段识别方法[J]. 电网技术, 2018, 42(10): 3451-3458.
Li Gang, Wang Ke, Zhang Shuqi, et al.Evolution characteristics and stage recognition method of surface discharge defects of oil-paper insulation in transformer[J]. Power System Technology, 2018, 42(10): 3451-3458.
[9] 刘宇舜, 周文俊, 李鹏飞, 等. 基于广义S变换模时频矩阵的局部放电特高频信号去噪方法[J]. 电工技术学报, 2017, 32(9): 211-220.
Liu Yushun, Zhou Wenjun, Li Pengfei, et al.Partial discharge ultrahigh frequency signal denoising method based on generalized S-transform modular time-frequency matrix[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 211-220.
[10] 李旭东, 李剑, 杜林, 等. 用于超高频局部放电监测的智能传感器研制[J]. 高电压技术, 2015, 41(12): 3944-3951.
Li Xudong, Li Jian, Du Lin, et al.Development of smart sensor for ultra-high-frequency partial dis-charge detection[J]. High Voltage Engineering, 2015, 41(12): 3944-3951.
[11] 谭巧, 唐炬, 曾福平. 检测气体绝缘组合电器局部放电的四频段微带单极子特高频天线设计[J]. 电工技术学报, 2016, 31(10): 127-135, 144.
Tan Qiao, Tang Ju, Zeng Fuping.Design of four-fold-band micro-strip monopole antenna for partial discharge detection in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 127-135, 144.
[12] 张晓星, 谌阳, 唐俊忠, 等. 检测GIS局部放电的小型准TEM喇叭天线[J]. 高电压技术, 2011, 37(8): 1975-1981.
Zhang Xiaoxing, Chen Yang, Tang Junzhong, et al.Minitype quasi-TEM horn antenna for partial dis-charge detection in GIS[J]. High Voltage Engineering, 2011, 37(8): 1975-1981.
[13] 唐炬, 魏钢, 孙才新, 等. GIS局部放电检测用超宽频带振子天线传感器研究[J]. 高电压技术, 2004, 30(3): 29-31, 42.
Tang Ju, Wei Gang, Sun Caixin, et al.Research on the dipole antenna sensor with broandband for partial discharge detection in GIS[J]. High Voltage Engin-eering, 2004, 30(3): 29-31, 42.
[14] 王永强, 李建芳, 李长元, 等. 检测GIS局部放电的小型化平面螺旋天线研究[J]. 高电压技术, 2016, 42(4): 1252-1258.
Wang Yongqiang, Li Jianfang, Li Changyuan, et al.Study on a miniaturized planar spiral antenna for partial discharge detection in GIS[J]. High Voltage Engineering, 2016, 42(4): 1252-1258.
[15] 李天辉, 荣命哲, 王小华, 等. GIS内置式局部放电特高频传感器的设计、优化及测试研究[J]. 中国电机工程学报, 2017, 37(18): 5483-5493, 5548.
Li Tianhui, Rong Mingzhe, Wang Xiaohua, et al.Design, optimization and experiment study of internal UHF sensor for partial discharge detection in GIS[J]. Proceedings of the CSEE, 2017, 37(18): 5483-5493, 5548.
[16] Li Junhao, Zhang Xuanrui, Han Xutao, et al.A partial discharge detection method for SF6 insulated inverted current transformers adopting inner shield case as UHF sensor[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 3237-3239.
[17] Hampton B F, Meats R J.Diagnostic measurements at UHF in gas insulated substations[J]. IEE Proceedings C Generation, Transmission and Distribution, 1988, 135(2): 137.
[18] 戴令亮. 柔性可形变射频天线的研究与设计[D]. 成都: 电子科技大学, 2019.
[19] 林昌禄. 近代天线设计[M]. 北京: 人民邮电出版社, 1990.
[20] 刘成, 赵玉顺, 罗义华, 等. 局部放电检测用小型化宽带平面螺旋天线研究[J]. 南方电网技术, 2020, 14(9): 37-44.
Liu Cheng, Zhao Yushun, Luo Yihua, et al.Miniaturization study on a wideband planar helical antenna for partial discharge detection[J]. Southern Power System Technology, 2020, 14(9): 37-44.
[21] 宋朝晖, 李红梅, 杨汉瑛, 等. 曲折臂形式的阿基米德螺旋天线小型化研究[J]. 微波学报, 2009, 25(2): 53-57.
Song Zhaohui, Li Hongmei, Yang Hanying, et al.Study on a miniaturized meander Archimedean spiral antenna[J]. Journal of Microwaves, 2009, 25(2): 53-57.
[22] 刘成. GIS局部放电检测用小型化平面螺旋天线的设计研究[D]. 合肥: 合肥工业大学, 2020.
[23] Wang Yawei, Wang Guangming, Zeng Huiyong.Low-profile Archimedean spiral antenna with approximate 50 Ω input impedance[J]. International Journal of Electronics Letters, 2013, 1(3): 151-158.
[24] 周电波, 许本茂, 张劲, 等. GIS固体绝缘缺陷所激发特高频信号时频特征研究[J]. 高压电器, 2021, 57(2): 33-41.
Zhou Dianbo, Xu Benmao, Zhang Jin, et al.Study on time-frequency characteristics of UHF signals excited by solid insulation defects in GIS[J]. High Voltage Apparatus, 2021, 57(2): 33-41.
[25] Sugumaran B, Balasubramanian R, Palaniswamy S K.Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications[J]. Engineering Science and Tech-nology, an International Journal, 2021, 24(3): 682-693.
[26] 许德成, 姜文龙, 宫明浩, 等. 基于导电织物的柔性可拉伸天线设计[J]. 吉林大学学报(理学版), 2020, 58(6): 1489-1493.
Xu Decheng, Jiang Wenlong, Gong Minghao, et al.Design of flexible stretchable antenna based on conductive fabric[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1489-1493.
[27] Alqadami A S M, Jamlos M F, Jamlos M A. Efficacy of a wideband flexible antenna on a multilayer polymeric nanocomposites Fe3O4-PDMS substrate for wearable applications[J]. Current Applied Physics, 2019, 19(11): 1259-1265.
[28] Huang G W, Xiao H M, Fu S Y. Wearable electronics of silver-nanowire/poly (dimethylsiloxane) nanocom-posite for smart clothing[J]. Scientific Reports, 2015, 5: 13971.
[29] Betancourt D, Castan J.Printed antenna on flexible low-cost pet substrate for uhf applications[J]. Progress in Electromagnetics Research C, 2013, 38: 129-140.
[30] Tam S K, Fung K Y, Ng K M.Copper pastes using bimodal particles for flexible printed electronics[J]. Journal of Materials Science, 2016, 51(4): 1914-1922.
[31] 董铁权. PI/SiO2纳米杂化薄膜力学性能及电性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2007.
[32] 张明振, 金杰, 常宇慧, 等. 基于PDMS材料的柔性双频天线的研究[J]. 南开大学学报(自然科学版), 2018, 51(6): 13-17.
Zhang Mingzhen, Jin Jie, Chang Yuhui, et al.Research on dual band PDMS based flexible antenna for wearable application[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2018, 51(6): 13-17.
[33] 杨文龙. 直流高电场下PET薄膜的电致发光和电流测试[D]. 哈尔滨: 哈尔滨理工大学, 2008.
[34] 李明洋, 刘敏, 杨放. HFSS天线设计[M]. 北京: 电子工业出版社, 2011.
[35] 汲胜昌, 王圆圆, 李军浩, 等. GIS局部放电检测用特高频天线研究现状及发展[J]. 高压电器, 2015, 51(4): 163-172, 177.
Ji Shengchang, Wang Yuanyuan, Li Junhao, et al.Review of UHF antenna for detecting partial discharge in GIS[J]. High Voltage Apparatus, 2015, 51(4): 163-172, 177.
[36] Q/GDW 11304.8-2019. 电力设备带电检测仪器技术规范, 第8部分: 特高频法局部放电带电检测仪技2术规范[S].
[37] 李伟, 舒娜, 雷鸣, 等. 检测GIS局部放电的矩形平面螺旋天线研究[J]. 高电压技术, 2014, 40(11): 3418-3423.
Li Wei, Shu Na, Lei Ming, et al.Study on a rectangular plan spiral antenna for partial discharge detection in GIS[J]. High Voltage Engineering, 2014, 40(11): 3418-3423.
[38] 邹阳, 周求宽, 刘明军, 等. 局部放电特高频检测装置抗电磁干扰性能的量化评估方法研究[J]. 电工技术学报, 2020, 35(10): 2275-2282.
Zou Yang, Zhou Qiukuan, Liu Mingjun, et al.Research on quantitative evaluation on anti-electromagnetic interference capability of ultra high frequency partial discharge detection instrument[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2275-2282.