电工技术学报  2022, Vol. 37 Issue (9): 2150-2160    DOI: 10.19595/j.cnki.1000-6753.tces.211512
“电力装备可靠性与智能化”专题(特约主编:李奎教授 牛峰教授) |
基于域对抗迁移卷积神经网络的小样本GIS绝缘缺陷智能诊断方法
王艳新, 闫静, 王建华, 耿英三, 刘志远
电力设备电气绝缘国家重点实验室(西安交通大学) 西安 710049
Intelligent Diagnosis for GIS with Small Samples Using a Novel Adversarial Transfer Learning in Convolutional Neural Network
Wang Yanxin, Yan Jing, Wang Jianhua, Geng Yingsan, Liu Zhiyuan
State Key Laboratory of Electrical Insulation for Power Equipment Xi’an Jiaotong University Xi’an 710049 China
全文: PDF (2735 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来,数据驱动的人工智能模型在气体绝缘组合电器(GIS)绝缘缺陷诊断上取得了一定突破。然而,这些以海量实验数据构建的模型难以部署到现场复杂工况和小样本条件下,导致现有诊断方法现场应用困难。为了解决现场制约传统诊断方法应用的数据匮乏难题和现有诊断模型现场应用困难的问题,该文提出了一种新颖的域对抗迁移卷积神经网络用于小样本下的GIS绝缘缺陷智能诊断。首先,以自动寻优构建的卷积神经网络从缺陷样本中学习可迁移绝缘缺陷表征特征,自动寻优构建方法在减少网络构建过程人为干预的同时,有效提升了网络精度等多方面性能。然后,引入域对抗迁移学习,实现海量数据(源域)下训练模型到复杂工况和小样本(目标域)下的迁移,以提升诊断准确率。通过对抗训练方法学习类边界表征特征和域空间表征特征,实现了诊断知识的迁移。在域对抗训练中引入两个领域分类器来进行决策边界域空间的对齐,获得了更合适的特征匹配。在实验室和现场实验验证中,所提方法在目标域下分别达到了99.35%和90.35%的诊断准确率。结果表明,该方法可以有效学习可迁移特征,实现小样本GIS绝缘缺陷的高精度、鲁棒性诊断。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳新
闫静
王建华
耿英三
刘志远
关键词 气体绝缘组合电器域对抗迁移学习卷积神经网络小样本智能诊断    
Abstract:In recent years, the artificial intelligence diagnosis method driven by massive data has made a certain breakthrough in the diagnosis of gas-insulated switchgear (GIS) insulation defects. However, these methods built with massive laboratory data are difficult to deploy to complex working conditions and small sample conditions on site, which leads to difficulties in field application of existing diagnostic methods. In order to solve the problem of data scarcity that restricts the application of traditional diagnostic methods in the field and the problem of difficult field application of existing diagnostic models, this paper proposes a novel domain adversarial transfer convolutional neural network for small samples GIS insulation defect diagnosis. First, the convolutional neural network (CNN) constructed with automatic optimization learns transferable features from defective samples. The automatic optimization construction method reduces human intervention in the network construction process, and effectively improves the network accuracy and other aspects of performance. Then, domain adversarial transfer learning is introduced to realize the migration of the trained model under massive data (source domain) to small sample complex working conditions (target domain) to realize the reliable diagnosis under complex small samples. Through the adversarial training, the class boundary representation feature and the domain space representation feature are learned to realize the transfer of diagnostic knowledge. And two domain classifiers are introduced to align the domain space of the decision boundary, and a more suitable feature matching is realized. The experimental verification was carried out on the laboratory and on-site GIS, which verified that the proposed method achieved 99.35% and 90.35% diagnostic accuracy in the target domains, respectively. The results show that this method can effectively learn transferable features, and achieve high-precision and robust diagnosis of insulation defects in small samples of GIS.
Key wordsGas-insulated switchgear (GIS)    domain adversarial transfer learning    convolutional neural network    small sample    intelligence diagnosis   
收稿日期: 2021-09-23     
PACS: TM835  
基金资助:国家电网有限公司科技项目资助(5500-202199527A-0-5-ZN)
通讯作者: 闫静 男,1973年生,副教授,研究方向为新型开关电器理论与技术,电力设备监测与诊断技术。E-mail:yanjing@mail.xjtu.edu.cn   
作者简介: 王艳新 男,1995年生,博士研究生,研究方向为电力设备在线检测与故障诊断技术。E-mail:xinxin199501@stu.xjtu.edu.cn
引用本文:   
王艳新, 闫静, 王建华, 耿英三, 刘志远. 基于域对抗迁移卷积神经网络的小样本GIS绝缘缺陷智能诊断方法[J]. 电工技术学报, 2022, 37(9): 2150-2160. Wang Yanxin, Yan Jing, Wang Jianhua, Geng Yingsan, Liu Zhiyuan. Intelligent Diagnosis for GIS with Small Samples Using a Novel Adversarial Transfer Learning in Convolutional Neural Network. Transactions of China Electrotechnical Society, 2022, 37(9): 2150-2160.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.211512          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I9/2150