Abstract:To address the problem that traditional fault diagnosis methods of electromechanical actuators largely depend on artificial feature extraction and engineering experience, this paper proposes an intelligent fault diagnosis method based on one dimensional convolutional neural network (1DCNN). Compared with the separation of feature extraction and classification in the traditional fault diagnosis algorithm, the proposed method combines the two into one. Firstly, the normal signals and fault signals of direct-driven electromechanical actuators are preprocessed by overlapping sampling to acquire data samples. Subsequently, the obtained samples are fed into the designed one-dimensional convolutional neural network model, and the effective feature representation is acquired through multi-layer data transformation, thereby establishing a mapping relationship between the raw data and operating state and achieving end-to-end fault diagnosisof electromechanical actuators. The experimental results demonstrate that the proposed algorithm can effectively diagnose the fault of the electromechanical actuator, and the fault recognition accuracy can reach about 98%. In addition, the proposed method can still maintain a high fault recognition accuracy under different white noise conditions, which shows that it has good robustness and generalization performance.
李世晓, 杜锦华, 龙云. 基于一维卷积神经网络的机电作动器故障诊断[J]. 电工技术学报, 2022, 37(zk1): 62-73.
Li Shixiao, Du Jinhua, Long Yun. Fault Diagnosis of Electromechanical Actuators Based on One-Dimensional Convolutional Neural Network. Transactions of China Electrotechnical Society, 2022, 37(zk1): 62-73.
[1] Li Jianming, Yu Zhiyuan, Huang Yuping, et al.A review of electromechanical actuation system for more electric aircraft[C]//IEEE International Conference on Aircraft Utility Systems(AUS), Beijing, China, 2016: 490-497. [2] 柳志娟, 李清, 柳先辉, 等. 基于强跟踪多模型估计器的作动器故障诊断[J]. 清华大学学报(自然科学版), 2012, 52(5): 642-647. Liu Zhijuan, Li Qing, Liu Xianhui, et al.Actuator fault diagnosis based on a strong-tracking multiple model estimator[J]. Journal of Tsinghua University (Science & Technology), 2012, 52(5): 642-647. [3] 王剑, 曹宇燕, 李婷, 等. 基于代数模型的机电作动器Vague动态故障树分析[J]. 西北工业大学学报, 2015, 33(6): 977-983. Wang Jian, Cao Yuyan, Li Ting, et al.A method for analyzing Vague dynamic fault tree of electro-mechanical actuator based on algebraic model[J]. Journal of Northwestern Polytechnical University, 2015, 33(6): 977-983. [4] 宋玉琴, 章卫国, 刘小雄. 基于RBF神经网络观测器飞控系统故障诊断[J]. 计算机仿真, 2010, 27(3): 85-88, 93. Song Yuqin, Zhang Weiguo, Liu Xiaoxiong.Fault diagnosis based on RBF neural network observer in flight control system[J]. Computer Simulation, 2010, 27(3): 85-88, 93. [5] Ruiz-Carcel C, Starr A.Data-based detection and diagnosis of faults in linear actuators[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(9): 2035-2047. [6] 王淑娟, 陈博, 赵国良. 基于小波包变换预处理的模拟电路故障诊断方法[J]. 电工技术学报, 2003, 18(4): 118-122. Wang Shujuan, Chen Bo, Zhao Guoliang.Analog circuit fault diagnosis based on wavelet packet preconditioning[J]. Transactions of China Electrotechnical Society, 2003, 18(4): 118-122. [7] 田瑶瑶, 张惠娟, 杨忠, 等. 基于小波包和SOM 神经网络的电作动器故障诊断[J]. 应用科技, 2018, 45(1): 1-6. Tian Yaoyao, Zhang Huijuan, Yang Zhong, et al.Fault diagnosis of electromechanical actuator based on wavelet packet and SOM neural network[J]. Applied Science and Technology, 2018, 45(1): 1-6. [8] Rai V K, Mohanty A R.Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2607-2615. [9] Delgado M, García A, Ortega J A, et al.Multidimensional intelligent diagnosis system based on support vector machine classifier[C]//IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 2011: 2124-2131. [10] 陈宗祥, 陈明星, 焦民胜, 等. 基于改进EMD和双谱分析的电机轴承故障诊断实现[J]. 电机与控制学报, 2018, 22(5): 78-83. Chen Zongxiang, Chen Mingxing, Jiao Minsheng, et al.Fault diagnosis of motor bearings using modified empirical mode decomposition and bi-spectrum[J]. Electric Machines and Control, 2018, 22(5): 78-83. [11] 刘俊, 王占林, 付永领, 等. 基于EEMD分解的直驱式机电作动器故障诊断[J]. 北京航空航天大学学报, 2012, 38(12): 1567-1571. Liu Jun, Wang Zhanlin, Fu Yongling, et al.Fault diagnosis of direct-driven electromechanical actuator based on ensemble empirical mode decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1567-1571. [12] Wang Xingjian, Zhao Jian, Wang Shaoping, et al.Fault diagnosis of electromechanical actuator based on principal component analysis and support vector machine[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS), Guiyang, China, 2018: 1467-1471. [13] Liu Hongmei, Jing Jiayao, Ma Jian.Fault diagnosis of electromechanical actuator based on VMD multifractal detrended fluctuation analysis and PNN[J]. Complexity, 2018(2): 1-11. [14] 刘永斌. 基于非线性信号分析的滚动轴承状态监测诊断研究[D]. 合肥: 中国科学技术大学, 2011. [15] Chen Juan, Wang Liyang.Electromechanical actuator modeling and its application in fault diagnosis[C]//International Conference on Mechanical, Electronic and Information Technology, Shanghai, China, 2018: 223-228. [16] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7): 27-34. Jiang Hongkai, Shao Haidong, Li Xingqiu.Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7): 27-34. [17] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. Qu Jianling, Yu Lu, Yuan Tao, et al.Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143. [18] Zhang Wei, Peng Gaoliang, Li Chuanhao, et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17(2): 425. [19] 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国电机工程学报, 2019, 39(15): 4558-4568. Xiao Xiong, Wang Jianxiang, Zhang Yongjun, et al.A two-dimensional convolutional neural network optimization method for bearing fault diagnosis[J]. Proceedings of the CSEE, 2019, 39(15): 4558-4568. [20] 张倩, 王建平, 李帷韬. 基于反馈机制的卷积神经网络绝缘子状态检测方法[J]. 电工技术学报, 2019, 34(16): 3311-3321. Zhang Qian, Wang Jianping, Li Weitao.Insulator state detection of convolutional neural networks based on feedback mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3311-3321. [21] 朱煜峰, 许永鹏, 陈孝信, 等. 基于卷积神经网络的直流XLPE电缆局部放电模式识别技术[J]. 电工技术学报, 2020, 35(3): 659-668. Zhu Yufeng, Xu Yongpeng, Chen Xiaoxin, et al.Pattern recognition of partial discharges in DC XLPE cables based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 659-668. [22] 孙曙光, 李勤, 杜太行, 等. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573. Sun Shuguang, Li Qin, Du Taihang, et al.Fault diagnosis of accessories for the low voltage conventional circuit breaker based on one-dimensional convolutional neural network[J]. Transactions of China Electrote-chnical Society, 2020, 35(12): 2562-2573. [23] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735. Wang Chen, Kou Peng.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2723-2735. [24] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to Lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [25] Krizhevsky A, Sutskever I, Hinton G E.Image Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [26] Hinton G, Deng Li, Yu Dong, et al.Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. [27] Kim Y.Convolutional neural networks for sentence classification[J]. arXiv Preprint, 2014. [28] 付永领, 刘和松, 庞尧, 等. 机载直驱式机电作动器的伺服控制器设计研究[J]. 测控技术, 2010, 29(7): 36-40. Fu Yongling, Liu Hesong, Pang Yao, et al.Design of controller for airborne direct drive electro-mechanical actuators[J]. Measurement & Control Technology, 2010, 29(7): 36-40. [29] 卢胜利. 开关磁阻电机系统的故障诊断方法研究[D]. 徐州:中国矿业大学, 2010. [30] Maaten L, Hinton G.Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2): 2579-2605.