A State Monitoring and Multi-Level Safety Pre-Warning Method for Electric Vehicle Charging Process
Gao Dexin1, Zheng Xiaoyu1, Wang Yi1, Yang Qing2
1. School of Automation and Electronic Engineering Qingdao University of Science & Technology Qingdao 266061 China; 2. School of Information Science and Technology Qingdao University of Science & Technology Qingdao 266061 China;
Abstract:The frequent occurrence of electric vehicle burning accidents during the charging process has become a key issue restricting the development of electric vehicles. Aiming at the problem of charging safety, this paper proposes a new method of electric vehicle charging status monitoring and multi-level safe pre-warning. The method is based on convolutional neural networks (CNN) and bi-directional long-short memory (BiLSTM), uses the charging history data of electric vehicles to construct a CNN-BiLSTM multi-level safety pre-warning model; designed the charging status monitoring and multi-level safe pre-warning implementation process of the model; compared with other models, verified the prediction accuracy of the model; through the sliding window method, the pre-warning threshold of the model is determined. Experiments have shown that this method can monitor the charging process of electric vehicles in real time, find faults in time and send out pre-warning signals to ensure the safety of electric vehicle charging.
高德欣, 郑晓雨, 王义, 杨清. 电动汽车充电状态监测与多级安全预报警方法[J]. 电工技术学报, 2022, 37(9): 2252-2262.
Gao Dexin, Zheng Xiaoyu, Wang Yi, Yang Qing. A State Monitoring and Multi-Level Safety Pre-Warning Method for Electric Vehicle Charging Process. Transactions of China Electrotechnical Society, 2022, 37(9): 2252-2262.
[1] 卿晓东, 苏玉刚. 电场耦合无线电能传输技术综述[J]. 电工技术学报, 2021, 36(17): 3649-3663. Qing Xiaodong, Su Yugang.An overview of electric-filed coupling wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3649-3663. [2] Yabe K, Shinoda Y, Seki T, et al.Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan[J]. Energy Policy, 2012, 45: 529-540. [3] Li Ming, Cui Song, Huang Haizhen, et al.Effect of pipes in heat pump system on electric vehicle energy saving[J]. International Journal of Green Energy, 2020, 17(11): 666-675. [4] 佟明昊, 程明, 许芷源, 等. 电动汽车用车载集成式充电系统若干关键技术问题及解决方案[J]. 电工技术学报, 2021, 36(24): 5125-5142. Tong Minghao, Cheng Ming, Xu Zhiyuan, et al.Key issues and solutions of integrated on-board chargers for electric vehicles[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5125-5142. [5] 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报, 2019, 55(24): 93-104, 116. Chen Zeyu, Xiong Rui, Sun Fengchun.Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24): 93-104, 116. [6] Gao Dexin, Wang Yi, Zheng Xiaoyu, et al.A fault warning method for electric vehicle charging process based on adaptive deep belief network[J]. World Electric Vehicle Journal, 2021, 12(4): 265. [7] 范文杰, 徐广昊, 于泊宁, 等. 基于电化学阻抗谱的锂离子电池内部温度在线估计方法研究[J]. 中国电机工程学报, 2021, 41(9): 3283-3293. Fan Wenjie, Xu Guanghao, Yu Boning, et al.On-line estimation method for internal temperature of lithium-ion battery based on electrochemical impedance spectroscopy[J]. Proceedings of the CSEE, 2021, 41(9): 3283-3293. [8] 孙金磊, 朱春波, 李磊, 等. 电动汽车动力电池温度在线估计方法[J]. 电工技术学报, 2017, 32(7): 197-203. Sun Jinlei, Zhu Chunbo, Li Lei, et al.Online temperature estimation method for electric vehicle power battery[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 197-203. [9] 肖迁, 焦志鹏, 穆云飞, 等. 基于LightGBM的电动汽车行驶工况下电池剩余使用寿命预测[J]. 电工技术学报, 2021, 36(24): 5176-5185. Xiao Qian, Jiao Zhipeng, Mu Yunfei, et al.Prediction of battery remaining service life of electric vehicle under driving conditions based on lightGBM[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5176-5185. [10] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [11] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. Qu Jianling, Yu Lu, Yuan Tao, et al.Adaptive fault diagnosis algorithm for rolling bearing based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143. [12] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. [13] 樊家伟, 郭瑜, 伍星, 等. 基于LSTM神经网络和故障特征增强的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(20): 271-277. Fan Jiawei, Guo Yu, Wu Xing, et al.Fault diagnosis of planetary gearbox based on LSTM neural network and fault feature enhancement[J]. Journal of Vibration and Shock, 2021, 40(20): 271-277. [14] Liang Tao, Meng Zhaochao, Xie Gaofeng, et al.Multi-running state health assessment of wind turbines drive system based on BiLSTM and GMM[J]. IEEE Access, 2020, 8: 143042-143054. [15] 赵志宏, 赵敬娇, 魏子洋. 基于BiLSTM的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40(1): 95-101. Zhao Zhihong, Zhao Jingjiao, Wei Ziyang.Rolling bearing fault diagnosis based on BiLSM network[J]. Journal of Vibration and Shock, 2021, 40(1): 95-101. [16] 王太勇, 王廷虎, 王鹏, 等. 基于注意力机制BiLSTM的设备智能故障诊断方法[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(6): 601-608. Wang Taiyong, Wang Tinghu, Wang Peng, et al.An intelligent fault diagnosis method based on attention-based bidirectional LSTM network[J]. Journal of Tianjin University (Science and Technology), 2020, 53(6): 601-608. [17] Wu Kuihua, Wu Jian, Feng Liang, et al.An attention-based CNN-LSTM-BiLSTM model for short-term electric load forecasting in integrated energy system[J]. International Transactions on Electrical Energy Systems, 2021, 31(1): e12637. [18] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. Lu Jixiang, Zhang Qipei, Yang Zhihong, et al.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. [19] 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219. Liang Haifeng, Yuan Peng, Gao Yajing.Remaining service life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219. [20] 王勇, 李亚菲, 陈雪鸿, 等. 电动汽车CAN协议的重放攻击与防御方法[J]. 上海电力大学学报, 2021, 37(4): 395-401, 406. Wang Yong, Li Yafei, Chen Xuehong, et al.Replay attack and defense methods of CAN protocol for electric vehicle charging[J]. Journal of Shanghai University of Electric Power, 2021, 37(4): 395-401, 406. [21] Ragone M, Yurkiv V, Ramasubramanian A, et al.Data driven estimation of electric vehicle battery state-of-charge informed by automotive simulations and multi-physics modeling[J]. Journal of Power Sources, 2021, 483: 229108. [22] GB/T 27930—2015 电动汽车非车载传导式充电机与电池管理系统之间的通信协议[S]. 2015.