Abstract:With the high proportion of wind power connected to the grid, the stable operation capability of full-power wind turbines is facing challenges. The traditional grid-side converter adopts a phase-locked loop (PLL) synchronization strategy. In a high-ratio power electronic system, the PLL is prone to phase-lock instability. The grid-side converter of the grid-forming full-power wind turbine adopts a power synchronization strategy based on the dynamic characteristics of the DC voltage to realize the grid-forming control of the DC voltage synchronization. In the grid-forming control of the full-power wind turbine grid-side converter using DC voltage synchronization, due to the power coupling problem in the grid-forming control, when the grid-side converter needs to transmit reactive power to the grid to provide active voltage support, the reactive power will affect the active power through the coupling channel, which will further affect the stability of the DC voltage and reduce the effective operation capacity of the system. In order to analyze the coupling problem of reactive power and DC voltage in the grid-side converter, this paper first introduces the grid-forming control structure of the DC voltage synchronization of the grid-side converter of the full-power wind turbine and establishes the DC voltage-reactive power coupling model. Through the theory of relative gain, the influence of control parameters on the coupling effect is analyzed in detail. Then, aiming at the grid-side coupling effect, a DC voltage compensation method based on reactive power feedforward is proposed, which reduces the dynamic overshoot of DC voltage fluctuations due to reactive power variations; Finally, the theoretical analysis and the proposed method are verified on the experimental platform of the 5 kW permanent magnet synchronous full-power wind turbine. The following conclusions can be drawn through the theoretical analysis results of the relative gain theory method and the verification of the experimental platform: (1) The influence of DC voltage control loop parameters on the grid-side coupling effect: when parameter T increases, the dynamic response time of the DC voltage will be increased and reduced, but the grid-side coupling degree is not affected. Parameter J has little influence on the dynamic process of the DC voltage: when parameter D increases, the coupling degree of the grid side increases, and the dynamic process of DC voltage becomes worse. (2) The influence of reactive loop control parameters on the grid-side coupling effect: when parameter KQp increases, the dynamic process of DC voltage oscillates, and the oscillation amplitude increases. When parameter KQi increases, the oscillation frequency of the dynamic process of DC voltage increases, but the oscillation amplitude changes little. (3) According to the design of parameter KL and parameter KF in theoretical analysis, after adopting the DC voltage compensation strategy with reactive power feedforward, the oscillation amplitude and overshoot of the DC voltage dynamic process caused by reactive power steps are reduced. In the experiment, if the appropriate parameter KF is selected, the dynamic overshoot amplitude of the DC voltage can be reduced by 81.8%. This method effectively suppresses the coupling effect on the grid side.
[1] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. Wang Tao, Zhu Ziqiang, Nian Heng.Review of operation technology of doubly-fed induction generator- based wind power system under nonideal grid conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. [2] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292. Yan Xiangwu, Wang Desheng, Yang Linlin, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(15): 3282-3292. [3] 吴广禄, 王姗姗, 周孝信, 等. VSC接入弱电网时外环有功控制稳定性解析[J]. 中国电机工程学报, 2019, 39(21): 6169-6183. Wu Guanglu, Wang Shanshan, Zhou Xiaoxin, et al.Analytical analysis on the active power control stabi- lity of the weak grids-connected VSC[J]. Proceedings of the CSEE, 2019, 39(21): 6169-6183. [4] 张学广, 付志超, 陈文佳, 等. 弱电网下考虑锁相环影响的并网逆变器改进控制方法[J]. 电力系统自动化, 2018, 42(7): 139-145. Zhang Xueguang, Fu Zhichao, Chen Wenjia, et al.An improved control method for grid-connected inverters considering impact of phase-locked loop under weak grid condition[J]. Automation of Electric Power Systems, 2018, 42(7): 139-145. [5] 杨苓, 陈燕东, 周乐明, 等. 弱电网下锁相环对三相LCL型并网逆变器小扰动建模影响及稳定性分析[J]. 中国电机工程学报, 2018, 38(13): 3792-3804, 4020. Yang Ling, Chen Yandong, Zhou Leming, et al.Influence of PLL on small disturbance modeling and stability analysis of three-phase LCL grid-connected inverter in weak current network[J]. Proceedings of the CSEE, 2018, 38(13): 3792-3804, 4020. [6] Zhong Qingchang, Weiss G.Synchronverters: inver- ters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. [7] 陶亮, 孙建军, 查晓明, 等. 基于虚拟同步发电机技术的改进型背靠背起动方法[J]. 电工技术学报, 2020, 35(增刊2): 413-420. Tao Liang, Sun Jianjun, Zha Xiaoming, et al.A modified back-to-back starting method based on virtual synchronous generator technology[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(S2): 413-420. [8] 章艳, 高晗, 张萌. 不同虚拟同步机控制下双馈风机系统频率响应差异研究[J]. 电工技术学报, 2020, 35(13): 2889-2900. Zhang Yan, Gao Han, Zhang Meng.Research on frequency response difference of doubly-fed indu- ction generator system controlled by different virtual synchronous generator controls[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2889-2900. [9] Harnefors L, Hinkkanen M, Riaz U, et al.Robust analytic design of power-synchronization control[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5810-5819. [10] 伍文华, 周乐明, 陈燕东, 等. 序阻抗视角下虚拟同步发电机与传统并网逆变器的稳定性对比分析[J]. 中国电机工程学报, 2019, 39(5): 1411-1421. Wu Wenhua, Zhou Leming, Chen Yandong, et al.Stability comparison and analysis between the virtual synchronous generator and the traditional grid- connected inverter in the view of sequence impe- dance[J]. Proceedings of the CSEE, 2019, 39(5): 1411-1421. [11] Huang Linbin, Xin Huanhai, Wang Zhen, et al.A virtual synchronous control for voltage-source con- verters utilizing dynamics of DC-link capacitor to realize self-synchronization[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(4): 1565-1577. [12] Guo Jian, Chen Yandong, Wang Lei, et al.Impedance analysis and stabilization of virtual synchronous generators with different DC-link voltage controllers under weak grid[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11397-11408. [13] 董文凯, 杜文娟, 王海风. 弱连接条件下锁相环动态主导的并网直驱风电场小干扰稳定性研究[J]. 电工技术学报, 2021, 36(3): 609-622. Dong Wenkai, Du Wenjuan, Wang Haifeng.Small- signal stability of a grid-connected PMSG wind farm dominated by dynamics of PLLs under weak grid connection[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 609-622. [14] 桑顺, 张琛, 蔡旭, 等. 全功率变换风电机组的电压源控制(一): 控制架构与弱电网运行稳定性分析[J]. 中国电机工程学报, 2021, 41(16): 5604-5616. Sang Shun, Zhang Chen, Cai Xu, et al.Voltage source control of wind turbines with full-scale converters (part Ⅰ): control architecture and stability analysis under weak grid conditions[J]. Proceedings of the CSEE, 2021, 41(16): 5604-5616. [15] 贺家发, 宋美艳, 兰洲, 等. 适应于弱电网的永磁直驱风电机组虚拟惯量协调控制策略[J]. 电力系统自动化, 2018, 42(9): 83-90. He Jiafa, Song Meiyan, Lan Zhou, et al.A virtual inertia coordinated control scheme of PMSG-based wind turbines in weak grids[J]. Automation of Electric Power Systems, 2018, 42(9): 83-90. [16] Wen Tiliang, Zhu Donghai, Zou Xudong, et al.Power coupling mechanism analysis and improved decoupling control for virtual synchronous generator[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3028-3041. [17] Li Mingxuan, Wang Yue, Hu Weihao, et al.Unified modeling and analysis of dynamic power coupling for grid-forming converters[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2321-2337. [18] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-391. Li Wuhua, Wang Jinhua, Yang Heya, et al.Power dynamic coupling mechanism and resonance suppression of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391. [19] 姜静雅, 王玮, 吴学智, 等. 基于自适应无功功率补偿的虚拟同步机功率解耦策略[J]. 电工技术学报, 2020, 35(13): 2747-2756. Jiang Jingya, Wang Wei, Wu Xuezhi, et al.Power decoupling strategy in virtual synchronous generator based on adaptive reactive power compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2747-2756. [20] 屈子森, 蔡云旖, 杨欢, 等. 基于自适应虚拟阻抗的虚拟同步机功率解耦控制策略[J]. 电力系统自动化, 2018, 42(17): 58-66. Qu Zisen, Cai Yunyi, Yang Huan, et al.Strategy of power decoupling control for virtual synchronous generator based on adaptive virtual impedances[J]. Automation of Electric Power Systems, 2018, 42(17): 58-66. [21] 李鹏, 杨世旺, 王阳, 等. 基于相对增益分析的目标函数对角化微网功率解耦控制方法[J]. 中国电机工程学报, 2014, 34(13): 2039-2046. Li Peng, Yang Shiwang, Wang Yang, et al.Objective function diagonalization decoupling control of micro- grid power based on relative gain analysis[J]. Proceedings of the CSEE, 2014, 34(13): 2039-2046. [22] Wu Teng, Liu Zeng, Liu Jinjun, et al.A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5587-5603. [23] 李明烜, 王跃, 徐宁一, 等. 松弛小功角约束条件的虚拟同步发电机功率解耦策略[J]. 电力系统自动化, 2018, 42(9): 59-68. Li Mingxuan, Wang Yue, Xu Ningyi, et al.Power decoupling strategy for virtual synchronous generator relaxing condition of small power angle[J]. Auto- mation of Electric Power Systems, 2018, 42(9): 59-68. [24] Zhao Fangzhou, Wang Xiongfei, Zhu Tianhua.Power dynamic decoupling control of grid-forming converter in stiff grid[J]. IEEE Transactions on Power Elec- tronics, 2022, 37(8): 9073-9088. [25] Wang Jing, Chang N C P, Feng Xiaowei, et al. Design of a generalized control algorithm for parallel inverters for smooth microgrid transition operation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4900-4914. [26] 张兴. PWM整流器及其控制策略的研究[D]. 合肥:合肥工业大学, 2003. [27] 李鹏, 杨世旺, 殷梓恒. 基于相对增益矩阵的微网稳压解耦下垂控制方法[J]. 中国电机工程学报, 2015, 35(5): 1041-1050. Li Peng, Yang Shiwang, Yin Ziheng.Voltage stabi- lization and decoupling droop control method for microgrid based on RGA[J]. Proceedings of the CSEE, 2015, 35(5): 1041-1050.