Zero DC Voltage Control Based DC Fault Ride-Through Strategy for Hybrid Modular Multilevel Converter in HVDC
Yin Taiyuan1, Wang Yue1, Duan Guozhao1, Liu Gang2, Hu Siquan2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Xuji Group Corporation Xuchang 461000 China
Abstract:DC short circuit fault ride is an important part of HVDC research. In this paper, for hybrid modular multilevel converter in HVDC, a zero DC voltage control based DC fault ride through strategy is proposed, independent control strategy of up and down arms is proposed to keep MMC arm energy balance during the fault ride-through process, negative voltage control for deionization reduction is used to increase fault current obliteration speed. Effectiveness of this zero DC voltage control based DC fault ride-through strategy is verified by simulation and experiment. Compared to MMC-blocked DC fault ride-through strategy, zero DC voltage control based DC fault ride-through strategy has the advantages of sub module voltage balance, uninterrupted reactive power supply and rapid system reboot.
尹太元, 王跃, 段国朝, 刘刚, 胡四全. 基于零直流电压控制的混合型MMC-HVDC直流短路故障穿越策略[J]. 电工技术学报, 2019, 34(zk1): 343-351.
Yin Taiyuan, Wang Yue, Duan Guozhao, Liu Gang, Hu Siquan. Zero DC Voltage Control Based DC Fault Ride-Through Strategy for Hybrid Modular Multilevel Converter in HVDC. Transactions of China Electrotechnical Society, 2019, 34(zk1): 343-351.
[1] Hayashiya H, Suzuki T, Kawahara K, et al.Comparative study of investment and efficiency to reduce energy consumption in traction power supply: a present situation of regenerative energy utilization by energy storage system[C]//IEEE Power Elec- tronics and Motion Control Conference and Exposition, Antalya, Turkey, 2014: 685-690. [2] 诸斐琴, 杨中平, 林飞, 等. 基于加速时间预测的现代有轨电车储能系统能量管理与容量配置优化研究[J]. 电工技术学报, 2017, 32(23): 158-166. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Research on energy management and capacity allocation optimization of modern tram energy storage system based on acceleration time prediction[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(23): 158-166. [3] Suzuki T, Hayashiya H, Yamanoi T, et al.Appli- cation examples of energy saving measures in Japanese DC feeding system[C]//2014 International Power Electronics Conference, Hiroshima, Japan, 2014: 1062-1067. [4] 胡斯登, 梁梓鹏, 范栋琦, 等. 基于Z源变换器的电动汽车超级电容-电池混合储能系统[J]. 电工技术学报, 2017, 32(8): 247-255. Husten, Liang Shupeng, Fan Dongqi, et al. Electric vehicle super capacitor-battery hybrid energy storage system based on Z source converter[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 247-255. [5] Takashi Yamanoi, Shigeki Umeda, Yoshiaki Nakamura, et al.Field test of hybrid power supply system for DC electric railways[J]. West Japan Railway Company, Osaka, Japan, 2010. [6] Takahashi H, Tabata N, Ikarashi H, et al.Lithium ion battery application in traction power supply system[C]//2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 2014, DOI: 10.1109/EPEPEMC.2014. 6980635. [7] Sadakiyo M, Nagaoka N, Ametani A, et al.An optimal operating point control of lithium-ion battery in a power compensator for DC railway system[C]// IEEE International Universities Power Engineering Conference, Upec 2007, Brighton, UK, 2007: 681-686. [8] Park J Y, Heo J H, Shin S, et al.Economic evaluation of ESS in urban railway substation for peak load shaving based on net present value[J]. Journal of Electrical Engineering & Technology, 2017, 12(2): 981-987. [9] Park J Y, Jung H, Kim H, et al.Capacity determination of ESS for peak load shaving based on the actual measurement of loads in the substation of urban railway[J]. Transactions of the Korean Institute of Electrical Engineers, 2014, 63(6): 860-865. [10] Barrero R, Tackoen X, Mierlo J V.Improving energy efficiency in public transport: stationary supercapacitor based energy storage systems for a metro net- work[C]//2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008: 1-8. [11] 夏欢, 杨中平, 杨志鸿, 等. 基于列车运行状态的城轨超级电容储能装置控制策略[J]. 电工技术学报, 2017, 32(21): 16-23. Xia Huan, Yang Zhongping, Yang Zhihong, et al.Control strategy of urban rail supercapacitor energy storage device based on train running state[J] Transactions of China Electrotechnical Society, 2017, 32(21): 16-23. [12] 赵亚杰, 夏欢, 王俊兴, 等. 基于动态阈值调节的城轨交通超级电容储能系统控制策略研究[J]. 电工技术学报, 2015, 30(14): 427-433. Zhao Yajie, Xia Huan, Wang Junxing, et al.Research on control strategy of urban rail transit supercapacitor energy storage system based on dynamic threshold adjustment[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 427-433. [13] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 335-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.Control strategy of battery and super capacitor hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2014, 29(4): 335-340. [14] Iannuzzi D, Pagano E, Tricoli P.The use of energy storage systems for supporting the voltage needs of urban and suburban railway contact lines[J]. Energies, 2013, 6(4): 1802-1820. [15] 刘诗涵, 周羽生, 许振华, 等. 基于超级电容蓄能的永磁同步海上风电低电压穿越研究[J]. 电力系统保护与控制, 2018, 46(5): 9-15. Liu Shihan, Zhou Yusheng, Xu Zhenhua, et al.Research on low voltage ride-through of permanent magnet synchronous offshore wind power based on super capacitor energy storage[J]. Power System Protection and Control, 2018, 46(5): 9-15.