DC Fault Characteristics and Line Fault Recovery Strategy in Flexible DC Power Network
Su Jianshen1, Guo Jingdong2, Jin Tao1
1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350116 China; 2. State Grid Fujian Electric Power Research Institute Fuzhou 350007 China
Abstract:DC-side faults are the key issue of HVDC transmission based on modular multilevel converters(MMC), and in particular HVDC transmission is popularized for overhead line applications. In this paper, the characteristics of DC short-circuit faults are studied for a flexible DC power system. The half-bridge MMC fault equivalent circuit is established and the corresponding over-current analytical equation is deduced. The working mode of the hybrid DC circuit breaker breaking fault current is studied. A hybrid DC circuit breaker is used to propose a line reclosing strategy. On the PSCAD/EMTDC platform, a DC grid system simulation model was built to verify the effectiveness and feasibility of the proposed scheme. The results show that after the hybrid circuit breaker recloses, within 0.1s, the power of each converter station recovers and maintains stable operation. The DC grid can cross the short-circuit fault quickly and steadily.
苏见燊, 郭敬东, 金涛. 柔性直流电网中直流故障特性分析及线路故障重启策略[J]. 电工技术学报, 2019, 34(zk1): 352-359.
Su Jianshen, Guo Jingdong, Jin Tao. DC Fault Characteristics and Line Fault Recovery Strategy in Flexible DC Power Network. Transactions of China Electrotechnical Society, 2019, 34(zk1): 352-359.
[1] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan.New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [2] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [3] Shin J, Shin S, Kim Y, et al.Design and implementation of shaped magnetic resonance based wireless power transfer system for roadway powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1179-1192. [4] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2014, 29(4): 334-340. [5] 诸斐琴, 杨中平, 林飞, 等. 基于加速时间预测的现代有轨电车储能系统能量管理与容量配置优化研究[J]. 电工技术学报, 2017, 32(23): 158-166. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Research on acceleration-time-prediction-based energy manage- ment and optimal sizing of onboard energy storage system for modern trams[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 158-166. [6] Herrera V I, Gaztañaga H, Milo A, et al.Optimal energy management and sizing of a battery- supercapacitor-based light rail vehicle with a multiobjective approach[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 3367-3377. [7] Madawala U K, Thrimawithana D J, Kularatna N.An icpt-supercapacitor hybrid system for surge-free power transfer[J]. IEEE Transactions on Industrial Electronics, 2008, 54(6): 3287-3297. [8] 蒋勇斌, 王跃, 刘军文, 等. 基于跳频控制策略的串联-串联谐振无线电能传输系统的参数优化设计方法[J]. 电工技术学报, 2017, 32(16): 162-174. Jiang Yongbin, Wang Yue, Liu Junwen, et al.The optimal design methodology of series-series resonant tank parameters of wireless power transmission system based on leap frequency control strategy[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 162-174. [9] Wang Zhihui, Lu Xiao, Sun Yue, et al.Modeling of power loss in resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 17-21. [10] 宋凯, 李振杰, 杜志江, 等. 变负载无线充电系统的恒流充电技术[J]. 电工技术学报, 2017, 32(13): 130-136. Song Kai, Li Zhenjie, Du Zhijiang, et al.Constant current charing techology for variable load wireless charing system[J]. Transactions of China Electro- technical Society, 2017, 32(13): 130-136. [11] Zhong W X, Hui S Y R. Maximum energy efficiency tracking for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 4025-4034. [12] Wu H H, Gilchrist A, Sealy K D, et al.A high efficiency 5kW inductive charger for EVS using dual side control[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 585-595. [13] Wang Lijuan, Gonder J, Burton E, et al.A cost effectiveness analysis of quasi-static wireless power transfer for plug-in hybrid electric transit buses[C]// IEEE Vehicle Power and Propulsion Conference, Montreal, QC, Canada, 2015: 1-7. [14] Hata K, Huang Xiaoliang, Hori Y.Power flow control of magnetic resonance wireless charging for hybrid energy storage system of electric vehicles application[C]//IEEE Society of Instrument and Control Engineers of Japan, Hangzhou, China, 2015: 1459-1462. [15] Geng Yuyu, Li Bin, Yang Zhongping, et al.A high efficiency charging strategy for a supercapacitor using a wireless power transfer system based on inductor/capacitor/capacitor (LCC) compensation topology[J]. Energies, 2017, 10(1): 135.