Abstract:The fault arc in the direct current (DC) system is persistent, and the high temperature it produces will release energy and induce combustible material combustion. DC fault arc is difficult to detect and extremely dangerous. Aiming at the temperature distribution of DC fault arc, this paper developed a numerical model of steady-state heat transfer of DC fault arc based on magneto-hydrodynamics and carried out a systematic numerical study of the discharge process under different circuit voltages, resistances and electrode gap to obtain the temperature distribution of the steady-state heat transfer model of DC fault arc. Based on the calculated results of the model, the law of maximum arc temperature change and the heat transfer law of arc heat source to the internal temperature of the electrode is revealed. The results show that the maximum temperature of fault arc decreases inversely with the increase of resistance, increases exponentially with the increase of electrode gap, increases linearly with the increase of circuit voltage in a certain range, but the temperature rise rate decreases with circuit voltage increases. When arc temperature rises, there is a higher temperature drop rate of electrode conductor near the arc, which decreases with the extension of the conductor. The increase of electrode gap will make the maximum arc temperature shift towards the tip electrode.
吴祺嵘, 张认成, 涂然, 杨凯, 周学进. 直流故障电弧稳态传热特性仿真研究[J]. 电工技术学报, 2021, 36(13): 2697-2709.
Wu Qirong, Zhang Rencheng, Tu Ran, Yang Kai, Zhou Xuejin. Simulation Study on Steady-State Heat Transfer Characteristics of DC Arc Fault. Transactions of China Electrotechnical Society, 2021, 36(13): 2697-2709.
[1] Huang Xinyuan, Nakamura Y.A review of fundamental combustion phenomena in wire fires[J]. Fire Technology, 2020, 56(1): 315-360. [2] Zhu Gaojia, Liu Xiaoming, Li Longnv, et al.Coupled electromagnetic-thermal-fluidic analysis of permanent magnet synchronous machines with a modified model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2):204-209. [3] Wang Ning, Wang Huifang, Yang Shiyou.3D eddy current and temperature field analysis of large hydro-generators in leading phase operations[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 210-215. [4] 陈博博, 屈卫锋, 杨宏宇, 等. 小电流接地系统单相接地综合电弧模型与选线方法的研究[J]. 电力系统保护与控制, 2016, 44(16): 1-7. Chen Bobo, Qu Weifeng, Yang Hongyu, et al.Research on single-phase grounding integrated arc model and line selection method for small current grounding system[J]. Power System Protection and Control, 2016, 44(16): 1-7. [5] 许晔, 郭谋发, 陈彬, 等. 配电网单相接地电弧建模及仿真分析研究[J]. 电力系统保护与控制, 2015, 43(7): 57-64. Xu Ye, Guo Mufa, Chen Bin, et al.Modeling and simulation analysis of single-phase grounding arc in distribution networks[J]. Power System Protection and Control, 2015, 43(7): 57-64. [6] 高杨, 王莉, 张瑶佳, 等. 简化的Schavemaker交流电弧模型参数的计算方法研究[J]. 电力系统保护与控制, 2019, 47(8): 96-105. Gao Yang, Wang Li, Zhang Yaojia, et al.Research on the calculation method of simplified Schavemaker AC arc model parameters[J]. Power System Protection and Control, 2019, 47(8): 96-105. [7] 李奎, 陈照, 张洋子, 等. 基于聚类分析和电磁辐射信号的电弧故障识别[J]. 电机与控制学报, 2018, 22(5): 94-101. Li Kui, Chen Zhao, Zhang Yangzi, et al.Arc fault detection based on cluster analysis and electromagnetic radiation[J]. Electric Machines and Control, 2018, 22(5): 94-101. [8] 崔芮华, 王传宇, 王洋. VMD-ApEn在航空交流串联型电弧故障检测中的应用[J]. 电机与控制学报, 2020, 24(8): 141-149. Cui Ruihua, Wang Chuanyu, Wang Yang.Application of VMD-ApEn in aviation AC series arc fault detection[J]. Electric Machines and Control, 2020, 24(8): 141-149. [9] 熊兰, 曾泽宇, 杨军, 等. 小电流直流故障电弧的数学模型及其特性[J].电工技术学报, 2019, 34(13): 2820-2829. Xiong Lan, Zeng Zeyu, Yang Jun, et al.Mathematical model and characteristics of low-current DC fault arc[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2820-2829. [10] 赵铁军, 孟菁, 宋岳奇, 等. 组串式光伏系统直流串联电弧故障检测与保护策略[J]. 电力系统保护与控制, 2020, 48(20): 74-82. Zhao Tiejun, Meng Jing, Song Yueqi, et al.Series arc detection and protection on the DC side of string-type PVs[J]. Power System Protection and Control, 2020, 48(20): 74-82. [11] 廖延涛, 胡骏, 张海龙, 等. 用于电能质量预测分析的交流电弧炉时变参数模型[J]. 电气技术, 2016, 17(3): 41-46. Liao Yantao, Hu Jun, Zhang Hailong, et al.Time-varying parameter model of AC arc furnace for power quality prediction and analysis[J]. Electrical Engineering, 2016, 17(3): 41-46. [12] 陈烜, 冷继伟, 李海峰. 基于全相位谱和深度学习的串联故障电弧识别方法[J]. 电力系统保护与控制, 2020, 48(17): 1-8. Chen Xuan, Leng Jiwei, Li Haifeng.Series fault arc recognition method based on an all-phase spectrum and deep learning[J]. Power System Protection and Control, 2020, 48(17): 1-8. [13] 荣命哲, 吴翊, 杨飞, 等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12, 23. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12, 23. [14] Huang Keyao, Sun Hao, Niu Chunping, et al.Simulation of arcs for DC relay considering different impacts[J]. Plasma Science and Technology, 2019, 22(2): 21-30. [15] 曹启纯, 刘向军. 高压直流继电器电弧运动仿真分析与实验研究[J]. 电工技术学报, 2019, 34(22): 4699-4707. Cao Qichun, Liu Xiangjun.Simulation analysis and experimental research on arc motion in high voltage DC relay[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4699-4707. [16] 翟国富, 薄凯, 李庆楠, 等. 直流电弧运动过程中重击穿现象及机理研究[J]. 电工技术学报, 2016, 31(11): 105-113. Zhai Guofu, Bo Kai, Li Qingnan, et al.Research on the phenomenon and mechanism of rebreakdown during DC arc movement[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 105-113. [17] 蒋原, 李擎, 崔家瑞, 等. 纵向磁场下中频真空电弧的重燃现象分析[J]. 电工技术学报, 2020, 35(18): 3860-3868. Jiang Yuan, Li Qing, Cui Jiarui, et al.Re-ignition of intermediate frequency vacuum arc at axial magnetic field[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3860-3868. [18] 王立军, 贾申利, 刘宇, 等. 纵磁下真空电弧阳极热过程的仿真[J]. 电工技术学报, 2011, 26(3): 65-73. Wang Lijun, Jia Shenli, Liu Yu, et al.Simulation of anode thermal process in vacuum arc under axial magnetic field[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 65-73. [19] Rong Mingzhe, Li Mei, Wu Yi, et al.3-D MHD modeling of internal fault arc in a closed container[J]. IEEE Transactions on Power Delivery, 2017: 1220-1227. [20] 马云双, 高国强, 朱光亚. 高速列车弓网电弧温度场特性仿真研究[J]. 高电压技术, 2015, 41(11): 3597-3603. Ma Yunshuang, Gao Guoqiang, Zhu Guangya.Simulation study on arc temperature field characteristics of high-speed train pantograph[J]. High Voltage Engineering, 2015, 41(11): 3597-3603. [21] 朱光亚, 吴广宁, 高国强, 等. 高速列车静态升降弓电弧的磁流体动力学仿真研究[J]. 高电压技术, 2016, 42(2): 642-649. Zhu Guangya, Wu Guangning, Gao Guoqiang, et al.Magnetohydrodynamic simulation of static lifting bow arc of high-speed train[J]. High Voltage Engineering, 2016, 42(2): 642-649. [22] 许潘, 杨泽锋, 魏文赋, 等. 降弓电弧对接触线侵蚀的仿真研究[J]. 高电压技术, 2019, 45(11): 3529-3538. Xu Pan, Yang Zefeng, Wei Wenfu, et al.Simulation study on erosion of contact line by downbow arc[J]. High Voltage Engineering, 2019, 45(11): 3529-3538. [23] 伍玉鑫, 王阳明, 杨泽锋, 等. 电弧作用下浸铜碳材料烧蚀过程的数值模拟[J]. 电工技术学报, 2019, 34(6): 1119-1126. Wu Yuxin, Wang Yangming, Yang Zefeng, et al.Numerical simulation of the ablative process of copper carbon impregnated by electric arc[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1119-1126. [24] 伍玉鑫, 杨泽锋, 高国强, 等. 电弧作用下电接触材料的热烧蚀过程[J]. 高电压技术, 2019, 45(7): 2276-2283. Wu Yuxin, Yang Zefeng, Gao Guoqiang, et al.Thermal ablation of electrically contacting materials under electric arc[J]. High Voltage Engineering, 2019, 45(7): 2276-2283. [25] 付思, 曹云东, 李静, 等. 触头分离瞬间真空金属蒸气电弧形成过程的仿真[J]. 电工技术学报, 2020, 35(13): 2922-2931. Fu Si, Cao Yundong, Li Jinget al. Simulation researches on vacuum metal vapor arc formation at the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931. [26] 钟昱铭, 熊兰, 杨子康, 等. 计及铜蒸气介质的小电流直流电弧仿真与实验[J]. 电工技术学报, 2020, 35(13): 2913-2921. Zhong Yuming, Xiong Lan, Yang Zikang.Numerical simulation and experiment of small current DC arc considering copper vapor medium[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2913-2921. [27] Yang Fan, Liu Kai, Wang Shaohua, et al.A thermal-stress field calculation method based on the equivalent heat source for the dielectric fitting under discharging[J]. Applied Thermal Engineering, 2018, 138: 183-196. [28] 付光晶. 基于COMSOL的故障电弧仿真研究[D]. 上海: 上海交通大学, 2018. [29] 刘希禹, 祁澎泳. 电信和数据中心高压直流供电系统的目标电压范围(260 VDC-400 VDC)[J]. 电源世界, 2014(7): 59-65. Liu Xiyu, Qi Pengyong .Target voltage range of high voltage power feeding system for telecommunication and data center(260 VDC -400VDC)[J]. The World of Power Supply, 2014(7): 59-65. [30] He Hailong, Wu Yi, Yang Zhuo, et al.Study of liquid metal fault current limiter for medium-voltage DC power systems[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(8): 1391-1400. [31] Fisher L E . Resistance of low-voltage AC arcs[J]. IEEE Transactions on Industry & General Applications, 2009, IGA-6(6): 607-616. [32] Du Jianhua, Tu Ran, Zeng Yi, et al.An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires[J]. PLoS One, 2017, 12(8): e0182811. [33] 王其平. 电器电弧理论[M]. 北京: 机械工业出版社, 1991.