Abstract:The working characteristics of giant magnetostrictive transducers (GMT) are closely related to temperature. Fast and accurate calculation and prediction of transducer temperature distribution is the key to transducer design. With the advantages of low calculation cost and high accuracy, thermal network modeling has been developed for GMT thermal analysis. However, most studies focus on steady-state modeling, ignoring the obvious temperature gradient of giant magnetostrictive rod caused by the poor thermal conductivity in the thermal transient. Therefore, this paper established a transient equivalent thermal network model of the GMT, considering the distinctiveness of the giant magnetostrictive rod as a heat source and the influence of the spatial distribution of the rod temperature. Firstly, based on the structure and working principle of the transducer, the thermal analysis was carried out. Then, the giant magnetostrictive rod was modeled. According to the internal heat transfer process of the GMT, a complete transient thermal network model was established and the model parameters were calculated. Finally, the finite element simulation model and the experimental platform of a GMT were built, and the effectiveness and accuracy of the proposed model were verified.
[1] 黄文美, 薛胤龙, 王莉, 等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178. Huang Wenmei, Xue Yinlong, Wang Li, et al.Multi-field coupling model considering dynamic losses for giant magnetostrictive transducers[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178. [2] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 2079-2087. Weng Ling, Chang Zhen, Sun Ying, et al.Analysis and experimental study on high frequency magneto-strictive energy loss of different magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2079-2087. [3] 刘楚辉. 相变温控及其在超磁致伸缩致动器中的应用[J]. 组合机床与自动化加工技术, 2006(10): 50-52. Liu Chuhui.Application of phase change temperature control to GMA[J]. Modular Machine Tool & Auto-matic Manufacturing Technique, 2006(10): 50-52. [4] Blottman J, Butler S C, Gittings K D, et al.Thermal design of high-power active transducers with the Atila finite element code[J]. Proceedings of the Institute of Acoustics, 2005, 27(1): 87-91. [5] Uchino K, Debus J C.Applications of ATILA FEM software to smart materials: case studies in designing devices[M]. Philadelphia, USA: Woodhead Publishing Ltd, 2012. [6] Clark A E, Crowder D H.High temperature magneto-striction of TbFe2 and Tb0.27Dy0.73Fe2[J]. IEEE Transactions on Magnetics, 1985, 21(5): 1945-1947. [7] Nersessian N, Or S W, Carman G P.Magneto-thermo-mechanical characterization of 1-3 type polymer-bonded Terfenol-D composites[J]. Journal of Magnet-ism and Magnetic Materials, 2003, 263(1/2): 101-112. [8] Wallscheid O, Böcker J.Global identification of a low-order lumped-parameter thermal network for per-manent magnet synchronous motors[J]. IEEE Transa-ctions on Energy Conversion, 2016, 31(1): 354-365. [9] Dubus B, Bigotte P, Boucher D.Thermal limit analysis of low-frequency high power sonar pro-jectors[C]//1st European Conference on Underwater Acoustics, New York, USA, 1992: 623-626. [10] 曾海泉, 曾庚鑫, 曾建斌, 等. 超磁致伸缩功率超声换能器热分析[J]. 中国电机工程学报, 2011, 31(6): 116-120. Zeng Haiquan, Zeng Gengxin, Zeng Jianbin, et al.Thermal analysis of giant magnetostrictive high power ultrasonic transducer[J]. Proceedings of the CSEE, 2011, 31(6): 116-120. [11] 吴亮, 彭辉, 关向雨, 等. 考虑触头结构的气体绝缘母线热网络模型[J]. 电工技术学报, 2020, 35(18): 3838-3847. Wu Liang, Peng Hui, Guan Xiangyu, et al.Gas insulated bus thermal network model considering contact structure[J]. Transactions of China Electro-technical Society, 2020, 35(18): 3838-3847. [12] 胡剑, 熊小伏, 王建. 基于热网络模型的架空输电线路径向和周向温度计算方法[J]. 电工技术学报, 2019, 34(1): 139-152. Hu Jian, Xiong Xiaofu, Wang Jian.Radial and cir-cumferential temperature calculation method of over-head transmission lines based on thermal network model[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 139-152. [13] 姜鑫, 应展烽, 万萌, 等. 计及环境对流随机性的功率器件结-环境热网络模型[J]. 电工技术学报, 2021, 36(14): 3090-3100. Jiang Xin, Ying Zhanfeng, Wan Meng, et al.Junction-to-ambient thermal network model of power devices considering randomness of thermal convective environ-ment[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3090-3100. [14] 王红宇, 李和明, 罗应立. 计及轴向周向热传导的耦合网络模型和有限元模型的比较研究[J]. 电工技术学报, 2008, 23(7): 1-8. Wang Hongyu, Li Heming, Luo Yingli.Comparison between thermal-liquid coupled network model with the axial-/circle-heat transfer and FEM model[J]. Transactions of China Electrotechnical Society, 2008, 23(7): 1-8. [15] Kral C, Haumer A, Lee Sangbin.A practical thermal model for the estimation of permanent magnet and stator winding temperatures[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 455-464. [16] Wallscheid O, Böcker J.Global identification of a low-order lumped-parameter thermal network for Permanent magnet synchronous motors[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 354-365. [17] Mellor P H, Roberts D, Turner D R.Lumped parameter thermal model for electrical machines of TEFC design[J]. IEE Proceedings B (Electric Power Applications). IET Digital Library, 1991, 138(5): 205-218. [18] Verez G, Tiegna H, Barakat G, et al.Analytical thermal modelling of axial flux permanent magnet synchronous machines[C]//2012 20th International Conference on Electrical Machines, Marseille, France, 2012: 2799-2805. [19] Boglietti A, Cavagnino A, Staton D.Determination of critical parameters in electrical machine thermal models[J]. IEEE transactions on Industry Applica-tions, 2008, 44(4): 1150-1159. [20] 汪文博. 永磁同步电机的热路模型研究[D]. 杭州:浙江大学, 2014. [21] Dubus B, Boucher D.An analytical evaluation of the heating of low-frequency sonar projectors[J]. The Journal of the Acoustical Society of America, 1994, 95(4): 1983-1990. [22] Anjanappa M, Bi J.A theoretical and experimental study of magnetostrictive mini-actuators[J]. Smart Materials and Structures, 1994, 3(2): 83-91. [23] Zhu Yuchuan, Ji Liang.Theoretical and experimental investigations of the temperature and thermal defor-mation of a giant magnetostrictive actuator[J]. Sensors and Actuators A: Physical, 2014, 218: 167-178. [24] Nerg J, Rilla M, Pyrhonen J.Thermal analysis of radial-flux electrical machines with a high power density[J]. IEEE Transactions on industrial electro-nics, 2008, 55(10): 3543-3554. [25] Bahman A S, Ma Ke, Blaabjerg F.A lumped thermal model including thermal coupling and thermal boundary conditions for high-power IGBT modules[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2518-2530. [26] 管海滨. 超磁致伸缩换能器的损耗和温升特性分析[D]. 天津: 河北工业大学, 2014. [27] Angara R.High frequency high amplitude magnetic field driving system for magnetostrictive actuators[D]. Baltimore County: University of Maryland, 2009. [28] 纪良. 超磁致伸缩电静液作动器温度场分布与热位移特性研究[D]. 南京: 南京航空航天大学, 2016. [29] Hall D L.Dynamics and vibrations of magneto-strictive transducers[D]. Iowa State University, 1994. [30] Du Ruoyang, Robertson P.Modelling of dynamic magnetic hysteresis loops and power losses in laminated steel[C]//2015 17th UKSim-AMSS International Con-ference on Modelling and Simulation (UKSim), Cambridge, UKL, 2015: 432-437. [31] 高嘉纬. 超磁致伸缩换能器的高频损耗和温升特性研究[D]. 天津: 河北工业大学, 2016. [32] Greenough R D, Reed J, O'Connor K. Characteri-sation of magnetostrictive or piezoelectric materials and transducers[C]//IEEE Colloquium on Innovative Actuators for Mechatronic Systems, London, UK, 1995. [33] Guo Pingping, Huang Wenmei, Xia Zhiyu, et al.Variable coefficient magnetic energy loss calculating model for magnetostrictive materials considering compressive stress[J]. AIP Advances, 2021, 11(3): 035227.