[1] 国家发展改革委、国家能源局等.“十四五”可再生能源发展规划 [EB/OL].[2019-07-04]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202206/P020220602315308557623.pdf.
[2] 申建建, 王月, 程春田, 等. 水风光多能互补发电调度问题研究现状及展望[J]. 中国电机工程学报, 2022, 42(11): 3871-3884.
Shen Jianjian, Wang Yue, Cheng Chuntian, et al.Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system[J]. Proceedings of the CSEE, 2022, 42(11): 3871-3884.
[3] Yin Haiping, Fan Lingling, Miao Zhixin.Fast power routing through HVDC[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1432-1441.
[4] Flourentzou N, Agelidis V G, Demetriades G D.VSC-based HVDC power transmission systems: an overview[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 592-602.
[5] 孟沛彧, 向往, 迟永宁, 等. 一种适用于大规模新能源远距离外送的分层混联输电系统[J]. 中国电机工程学报, 2021, 41(10): 3349-3363.
Meng Peiyu, Xiang Wang, Chi Yongning, et al.A hierarchical LCC-MMC hybrid transmission system for transmitting large-scale renewable power over long-distance[J]. Proceedings of the CSEE, 2021, 41(10): 3349-3363.
[6] 贺永杰, 向往, 周家培, 等. LCC-MMC串联型混合直流输电系统小信号建模[J]. 电工技术学报, 2021, 36(7): 1492-1506.
He Yongjie, Xiang Wang, Zhou Jiapei, et al.Small-signal modelling of LCC-MMC series hybrid HVDC transmission system[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1492-1506.
[7] 孟沛彧, 王志冰, 迟永宁, 等. 适应多能源基地远距离输送电能的混合四端直流输电系统控制策略研究[J]. 电工技术学报, 2020, 35(增刊2): 523-534.
Meng Peiyu, Wang Zhibing, Chi Yongning, et al.Control strategy of hybrid four-terminal HVDC transmission system dedicated for long-distance power delivery from multiple energy bases[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 523-534.
[8] 谢惠藩, 李桂源, 徐光虎, 等. 大容量特高压多端混合直流实际运行关键特性分析[J]. 南方电网技术, 2022, 16(2): 50-57.
Xie Huifan, Li Guiyuan, Xu Guanghu, et al.Analysis of key operation characteristics of high-capacity multi-terminal hybrid UHVDC[J]. Southern Power System Technology, 2022, 16(2): 50-57.
[9] 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42(11): 3698-3707.
Guo Xianshan, Zhou Yang, Mei Nian, et al.Construction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42(11): 3698-3707.
[10] 徐政, 王世佳, 张哲任, 等. LCC-MMC混合级联型直流输电系统受端接线和控制方式[J]. 电力建设, 2018, 39(7): 115-122.
Xu Zheng, Wang Shijia, Zhang Zheren, et al.Inverter station connection modes and control strategies of LCC-MMC hybrid HVDC systems[J]. Electric Power Construction, 2018, 39(7): 115-122.
[11] He Yongjie, Xiang Wang, Ni Binye, et al.Impact of strength and proximity of receiving AC systems on cascaded LCC-MMC hybrid HVDC system[J]. IEEE Transactions on Power Delivery, 2022, 37(2): 880-892.
[12] 李立浧. 特高压直流输电的技术特点与工程应用[J]. 电力设备, 2006(3): 1-4.
Li Licheng.Technical characteristics and engineering applications of UHVDC power transmission[J]. Electrical Equipment, 2006(3): 1-4.
[13] 蔡普成, 向往, 周猛, 等. 基于混合型MMC主动信号注入的直流故障自适应重合闸方法研究[J]. 中国电机工程学报, 2020, 40(12): 3867-3877.
Cai Pucheng, Xiang Wang, Zhou Meng, et al.Research on adaptive reclosing of DC fault based on active signal injected by hybrid MMC[J]. Proceedings of the CSEE, 2020, 40(12): 3867-3877.
[14] 许诘翊,刘威, 刘树,等.电力系统变流器构网控制技术的现状与发展趋势[J/OL].电网技术:1-8[2022-07-28].DOI:10.13335/j.1000-3673.pst.2021.2149.
XuJieyi, Liu Wei, Liu Shu, et al. Current state and development trends of power system converter grid-forming control technology[J/OL].Power System Technology:1-8[2022-07-28].DOI:10.1335/j1000.3673.pst.2021.2149.
[15] Wei Juan, Cao Yijia, Wu Qiuwei, et al.Coordinated droop control and adaptive model predictive control for enhancing HVRT and post-event recovery of large-scale wind farm[J]. IEEE Transactions on Sustainable Energy, 2021, 12(3): 1549-1560.
[16] 周猛, 向往, 林卫星, 等. 柔性直流电网直流线路故障主动限流控制[J]. 电网技术, 2018, 42(7): 2062-2072.
Zhou Meng, Xiang Wang, Lin Weixing, et al.Active current-limiting control to handle overhead line fault in DC grid[J]. Power System Technology, 2018, 42(7): 2062-2072.
[17] 赵畹君. 高压直流输电工程技术[M]. 2版. 北京: 中国电力出版社, 2011.
[18] 王增平, 刘席洋, 郑博文, 等. 基于电压波形拟合的换相失败快速预测与抑制措施[J]. 电工技术学报, 2020, 35(7): 1454-1463.
Wang Zengping, Liu Xiyang, Zheng Bowen, et al.The research on fast prediction and suppression measures of commutation failure based on voltage waveform fitting[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1454-1463.
[19] 郑子萱,杜凯健,肖先勇,等.直流换相失败下计及撬棒保护的双馈风机暂态特性解析与撬棒参数修正[J/OL]. 中国电机工程学报: 1-11[2022-07-28].DOI:10.13334/j.0258-8013.pcsee.212781.
ZhengZixuan, DuKaijian, XiaoXianyong, et al. Analysis of transient characteristics and correction of crowbar resistance of doubly fed induction generator with crowbar protection under HVDC commutation failure[J/OL].Proceedings of the CSEE: 1-11[2022-07-28].DOI:10.13334/j.0258-8013.pcsee.212781.
[20] 曹帅, 向往, 左文平, 等. 风电经柔性直流电网外送系统的交流故障诊断与穿越控制策略[J]. 中国电机工程学报, 2021, 41(4): 1295-1306.
Cao Shuai, Xiang Wang, Zuo Wenping, et al.AC fault diagnosis and ride-trough control strategy for the wind power delivery system via HVDC grid[J]. Proceedings of the CSEE, 2021, 41(4): 1295-1306.
[21] 王国英, 贾一凡, 邓娜, 等. 应用于海上风电接入的VSC-HVDC系统主网侧交流故障穿越方案[J]. 全球能源互联网, 2019, 2(2): 146-154.
Wang Guoying, Jia Yifan, Deng Na, et al.Grid side fault ride through solution for offshore wind connection with VSC-HVDC[J]. Journal of Global Energy Interconnection, 2019, 2(2): 146-154.
[22] 刘耀, 吴佳玮, 肖晋宇, 等. 有源型柔性直流输电技术在全球能源互联网背景下的应用研究[J]. 全球能源互联网, 2020, 3(2): 107-116.
Liu Yao, Wu Jiawei, Xiao Jinyu, et al.Application of active MMC-HVDC in the background of global energy interconnection[J]. Journal of Global Energy Interconnection, 2020, 3(2): 107-116.
[23] Zhang Haobo, Xiang Wang, Lin Weixing, et al.Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9(6): 1239-1256.
[24] Mahamedi B, Eskandari M, Fletcher J E, et al.Sequence-based control strategy with current limiting for the fault ride-through of inverter-interfaced distributed generators[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 165-174.
[25] Zhang Lidong, Harnefors L, Nee H P.Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820.
[26] Chen Xia, Lin Weixing, Sun Haishun, et al.LCC based MTDC for grid integration of large onshore wind farms in Northwest China[C]//2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011: 1-10.
[27] 刘启建, 杨美娟, 行登江, 等. 风电场经柔性直流孤岛送出的交流故障联合穿越策略[J]. 全球能源互联网, 2020, 3(2): 132-141.
Liu Qijian, Yang Meijuan, Xing Dengjiang, et al.Coordinated AC fault ride through strategy for wind farm connected to VSC-HVDC system by island[J]. Journal of Global Energy Interconnection, 2020, 3(2): 132-141.
[28] 撖奥洋, 张哲, 尹项根, 等. 双馈风力发电系统故障特性及保护方案构建[J]. 电工技术学报, 2012, 27(4): 233-239.
Han Aoyang, Zhang Zhe, Yin Xianggen, et al.Research on fault characteristic and grid connecting-point protection scheme for wind power generation with doubly-fed induction generator[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 233-239.
[29] Meng Peiyu, Xiang Wang, Chi Yongning, et al.Resilient DC voltage control for islanded wind farms integration using cascaded hybrid HVDC system[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1054-1066.
[30] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-474.
Xie Xiaorong, He Jingbo, Mao Hangyin, et al.New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-474.
[31] 许汉平, 杨炜晨, 张东寅, 等. 考虑换相失败相互影响的多馈入高压直流系统换相失败判断方法[J]. 电工技术学报, 2020, 35(8): 1776-1786.
Xu Hanping, Yang Weichen, Zhang Dongyin, et al.Commutation failure judgment method for multi-infeed HVDC systems considering the interaction of commutation failures[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1776-1786.
[32] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一):送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4404.
He Guoqing, Wang Weisheng, Liu Chun, et al.Commutation failure of UHVDC system for wind farm integration(part Ⅰ): transient reactive power and voltage modeling of wind Powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4404.
[33] 周莹坤, 孙华东, 徐式蕴, 等. 提升电网电压支撑强度的调相机优化配置方法[J/OL]. 电网技术, https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DWJS20211108000&DbName=DKFX2021.
Zhou Yingkun, Sun Huadong, Xu Shiyun, et al.Synchronous condenser optimized configuration scheme for power grid voltage support strength improvement[J/OL]. Power System Technology, https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DWJS20211108000&DbName=DKFX2021.
[34] 尹立敏, 雷钢, 吕莉莉, 等. 基于同步调相机降低换相失败风险的仿真研究[J]. 电测与仪表, 2018, 55(15): 138-143.
Yin Limin, Lei Gang, Lü Lili, et al.Simulation research on reducing the commutation failure based on synchronous condensers[J]. Electrical Measurement & Instrumentation, 2018, 55(15): 138-143.
[35] 上官博洋, 王顺亮, 马俊鹏, 等. 特高压直流输电系统中送端LCC换流站的电压平衡控制策略[J/OL]. 中国电机工程学报, 2022: 1-15. (2022-08-02). https://kns.cnki.net/kcms/detail/11.2107.TM.20220802.1639.007.html.
Shangguan Boyang, Wang Shunliang, Ma Junpeng, et al. Voltage balance control strategy of LCC converter station at sending end of UHVDC transmission SystemChinese full TextEnglish full text (MT)[J/OL]. Proceedings of the CSEE, 2022: 1-15. (2022-08-02). https://kns.cnki.net/kcms/detail/11.2107.TM.20220802.1639.007.html.
[36] 郭宏光, 吴彦维, 陈大鹏, 等. 分层接入方式下锡泰特高压直流输电系统阀组电压平衡控制[J]. 电力系统自动化, 2019, 43(2): 176-181.
Guo Hongguang, Wu Yanwei, Chen Dapeng, et al.Voltage balance control of valves in hierarchical connection mode for Ximeng-Taizhou UHVDC system[J]. Automation of Electric Power Systems, 2019, 43(2): 176-181. |