Review on Key Technologies of Hydrogen Generation, Storage and Transportation Based on Multi-Energy Complementary Renewable Energy
Li Zheng1, Zhang Rui1, Sun Hexu1, Zhang Wenda1, Mei Chunxiao2
1. School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 2. Hebei Construction & Investment Group New Energy Co. Ltd Shijiazhuang 050051 China
Abstract:Hydrogen energy is an effective means to solve the problem of energy shortage and serious pollution. The technology of hydrogen production from renewable energy is the cornerstone of the application and development of hydrogen energy. Firstly, it briefly summarizes the basic principles of hydrogen production technology and the advantages of renewable energy complementary system hydrogen production technology. Then, by analyzing the research and development history of hydrogen energy based on renewable energy at home and abroad, the problems that have been resolved or reached consensus are summarized, the level of hydrogen energy development reached is summarized. On this basis, the current development of hydrogen energy based on the complementary renewable energy system was elaborated and the existing ambiguities and difficult problems were discussed in depth. Finally, a comprehensive overview of the future development trend of hydrogen energy from the three aspects of hydrogen production, hydrogen storage and hydrogen transportation is carried out and the development direction of hydrogen energy application is predicted. Through in-depth analysis of the development history, research level, development trend, storage, transportation and application of hydrogen production technology, it provides a reference for the development of hydrogen production technology of renewable energy complementary systems.
李争, 张蕊, 孙鹤旭, 张文达, 梅春晓. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462.
Li Zheng, Zhang Rui, Sun Hexu, Zhang Wenda, Mei Chunxiao. Review on Key Technologies of Hydrogen Generation, Storage and Transportation Based on Multi-Energy Complementary Renewable Energy. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462.
[1] 鲍金成, 赵子亮, 马秋玉. 氢能技术发展趋势综述[J]. 汽车文摘, 2020, 2(529): 6-11. Bao Jincheng, Zhao Ziliang, Ma Qiuyu.Summary of the development trend of hydrogen energy technology[J]. Automotive Digset, 2020, 2(529): 6-11. [2] 蔡国伟, 孔令国, 薛宇. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135. Cai Guowei, Kong Lingguo, Xue Yu.Review of wind-hydrogen coupling technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. [3] 蔡国伟, 陈冲, 孔令国. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94. Cai Guowei, Chen Chong, Kong Lingguo.Control strategies for hybrid systems of wind power / hydrogen production / fuel cells / supercapacitors[J]. Journal of Electrical Engineering & Technology, 2017, 32(17): 84-94. [4] 孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京: 华北电力大学, 2017. [5] 王梦娇, 王贵州, 孙振新, 等. 面向可持续能源创新的基于可再生能源制氢技术综述[J]. 全球能源互联网(英文), 2019, 2(5): 437-444. Wang Mengjiao, Wang Guizhou, Sun Zhenxin, et al.Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global Energy Interconnection, 2019, 2(5): 437-444. [6] 陈嘉鹏, 汤乃云, 汤华. 考虑可再生能源利用率的风-光-气-储微能源网经济调度研究[J]. 可再生能源, 2020, 38(1): 70-75. Chen Jiapeng, Tang Naiyun, Tang Hua.Research on economic dispatching of wind-photo-gas-storage micro energy network considering renewable energy utilization[J]. Renewable Energy, 2020, 38(1): 70-75. [7] 李毅中. 要科学选择制氢路径[J]. 中国石油石化, 2020, 1: 12-15. Li Yizhong.To choose a hydrogen production route scientifically[J]. China Petroleum and Petrochemical Corporation, 2020, 1: 12-15. [8] 张长令. 国外氢能产业导向、进展及我国氢能产业发展的思考[J]. 中国发展观察, 2020(1): 116-119. Zhang Changling.The orientation and progress of hydrogen energy industry in foreign countries and the development of China's hydrogen energy industry[J]. China Development Watch, 2020(1): 116-119. [9] 张丽, 陈硕翼. 风电制氢技术国内外发展现状及对策建议[J]. 科技中国, 2020(1): 13-16. Zhang Li, Chen Shuoyi.Development status and countermeasures of wind power hydrogen production technology at home and abroad[J]. Science and Technology China, 2020(1): 13-16. [10] 孔令国, 蔡国伟, 李龙飞. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报, 2018, 33(14): 3371-3384. Kong Lingguo, Cai Guowei, Li Longfei.On-line energy regulation strategy and experimental platform for wind-solar hydrogen integrated energy system[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. [11] 杨卫华, 宋旭飞, 蒋康乐. 风光互补联合制氢系在河北省不同地区的适用性分析[J]. 节能, 2018, 37(8): 64-68. Yang Weihua, Song Xufei, Jiang Kangle.Applicability analysis of wind-solar hybrid hydrogen production system in different areas of Hebei Province[J]. Energy Conservation, 2018, 37(8): 64-68. [12] 袁铁江, 彭生江, 胡克林. 面向煤基低碳能源战略的大规模风/光-氢储能-煤多能耦合系统[J]. 电气应用, 2019, 38(1): 10-15. Yuan Tiejiang, Peng Shengjiang, Hu Kelin.Large-scale wind/photo-hydrogen storage-coal multi-energy coupling system for coal-based low-carbon energy strategy[J]. Electrical Applications, 2019, 38(1): 10-15. [13] 张志文, 范威, 刘军. 偏远山区风光水储互补发电系统容量优化配置[J]. 电源学报, 2018, 16(5): 138-146. Zhang Zhiwen, Fan Wei, Liu Jun.Optimized allocation of capacity for wind, solar and water storage complementary power generation systems in remote mountain areas[J]. Journal of Power Sources, 2018, 16(5): 138-146. [14] 余志勇, 万术来, 明志勇. “风光水”互补微电网的运行优化[J]. 电力建设, 2014, 35(6): 50-55. Yu Zhiyong, Wan Shulai, Ming Zhiyong.Operational optimization of “wind-light-water” complementary microgrid[J]. Electric Power Construction, 2014, 35(6): 50-55. [15] 崔勇, 李鹏. 姬德森. 基于多边收益的风光水能源联合运营策略[J]. 电力自动化设备, 2019, 39(4): 161-166, 173. Cui Yong, Li Peng, Ji Desen.Joint operation strategy of wind-light-water energy based on multilateral revenue[J]. Electric Power Automation Equipment, 2019, 39(4): 161-166, 173. [16] 徐世镐, 金贤, 庆泽林. 稀土元素回收过程中的工人安全[J]. 工作中安全与健康的回顾, 2019, 10(4): 409-419. Xu Shihao, Jin Xian, Qing Zelin.Worker safety in the rare earth elements recycling process[J]. The Review of Toxicity Safety and Health at Work, 2019, 10(4): 409-419. [17] 于娇娇, 苏伟, 孙艳. 水制氢技术研究进展[J]. 化学工业与工程, 2012, 29(5): 58-63. Yu Jiaojiao, Su Wei, Sun Yan.Advances in research on hydrogen production from water[J]. Chemical Industry and Engineering, 2012, 29(5): 58-63. [18] 刘芸. 绿色能源氢能及其电解水制氢技术进展[J]. 电源技术, 2012, 36(10): 1579-1581. Liu Yun.Green energy hydrogen energy and hydrogen production technology by electrolyzed water[J]. Power Technology, 2012, 36(10): 1579-1581. [19] 李永恒, 陈洁, 刘城市. 氢气制备技术的研究进展[J]. 电镀与精饰, 2019, 41(10): 22-27. Li Yongheng, Chen Jie, Liu Chengshi.Research progress in hydrogen production technology[J]. Plating & Finishing, 2019, 41(10): 22-27. [20] 舟丹. 水电解制氢技术发展概况[J]. 中外能源, 2017, 22(8): 69. Zhou Dan.Development of water electrolysis hydrogen production technology[J]. China and Foreign Energy, 2017, 22(8): 69. [21] 郝伟峰, 贾丹瑶, 李红军. 基于可再生能源水电解制氢技术发展概述[J]. 价值工程, 2018, 37(29): 236-237. Hao Weifeng, Jia Danyao, Li Hongjun.Overview of the development of hydrogen production technology based on renewable energy water electrolysis[J]. Value Engineering, 2018, 37(29): 236-237. [22] 何芳. 解读美国《全面能源战略》[J]. WTO 经济导刊, 2015, 2(2): 65-66. He Fang.Interpretation of the US comprehensive energy strategy[J]. WTO Economic Herald, 2015, 2(2): 65-66. [23] 王敏. 国内外新能源制氢发展现状及未来趋势[J]. 化学工业, 2018, 36(6): 13-18. Wang Min.Development status and future trends of new energy hydrogen production at home and abroad[J]. Chemical Industry, 2018, 36(6): 13-18. [24] Zaenal M U.Complementary power supply to compensate the wind power in water electrolytic system for hydrogen production[C]//2019 Global Conference for Advancement in Technology (GCAT), Bangaluru, India, 2019: 1-4. [25] Yilmaz Fatih, Murat Ozturk, Resat Selbas.Design and thermodynamic modeling of a renewable energy based plant for hydrogen production and compression[J]. International Journal of Hydrogen Energy, 2020, 0360(3199): 1-12. [26] Billah S M B, Kabir K M, Islam M O, et al. Hydrogen energy storage based green power plant in seashore of Bangladesh: design and optimal cost analysis[C]//International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 2017: 1-5. [27] Furat Dawood, Martin Anda, Shafiullah G M.Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. [28] Serna Alvaro.Evaluation of a long term system coupled with a short term system of a hydrogen-based microgrid[C]//International Renewable Energy Congress (IREC), Amman, Jordan, 2017: 1-6. [29] Seyam S, Al-Hamed K H M, Qureshy A M M I, et al. Multi-objective optimization of hydrogen production in hybrid renewable energy systems[C]//IEEE Congress on Evolutionary Computation (CEC), 2019: 850-857. [30] Human G, Schoor G Van, Uren K R.Power management and sizing optimisation of renewable energy hydrogen production systems[J]. Sustainable Energy Technologies and Assessments, 2019, 31(16): 155-166. [31] Yamashita D, Tsuno K, Koike K.Distributed control of a user-on-demand renewable-energy power-source system using battery and hydrogen hybrid energy-storage devices[J]. International Journal of Hydrogen Energy, 2019, 44(50): 27542-27552. [32] 何仲辉, 李林, 马芳平. 推动富余水电制氢促进绿色低碳发展[J]. 中国能源, 2019, 41(7): 5-10. He Zhonghui, Li Lin, Ma Fangping.Promote hydrogen production from surplus hydropower to promote green and low-carbon development[J]. China Energy, 2019, 41(7): 5-10. [33] 张佩兰, 郑黎. 工业制氢技术及经济性分析[J]. 山西化工, 2014, 34(5): 54-56. Zhang Peilan, Zheng Li.Industrial hydrogen production technology and economic analysis[J]. Shanxi Chemical Industry, 2014, 34(5): 54-56. [34] 金雪, 庄雨轩, 王辉. 氢储能解决弃风弃光问题的可行性分析研究[J]. 电工电气, 2019, 256(4): 67-72. Jin Xue, Zhuang Yuxuan, Wang Hui.Feasibility analysis and research on solving the problem of abandoning wind and light by hydrogen energy storage[J]. Electrical Engineering, 2019, 256(4): 67-72. [35] 蔡国伟, 陈冲, 孔令国. 风电/光伏/制氢/超级电容器并网系统建模与控制[J]. 电网技术, 2016, 40(10): 2982-2990. Cai Guowei, Chen Chong, Kong Lingguo.Modeling and control of wind power / photovoltaic / hydrogen production / supercapacitor grid-connected system[J]. Power System Technology, 2016, 40(10): 2982-2990. [36] 王代. 量化制氢系统的灵活性以支持大规模可再生能源整合[J]. 电源杂志, 2018, 399(30): 383-391. Wang Dai.Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration[J]. Journal of Power Sources, 2018, 399(30): 383-391. [37] 李文磊. 使用无线恶劣环境传感器的电解池温度监控和流量估算[J]. IEEE工业应用交易, 2018, 54(4): 3982-3990. Li Wenlei.Temperature monitoring and flow estimation in electrolytic cells using wireless harsh environment sensors[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3982-3990. [38] 沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015, 30(增刊1): 346-351. Shen Xin, Cao Min.Research on the impact of grid-connected distributed power sources on distribution networks[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 346-351. [39] Zhu Maowei.The design and optimization of the multi-energy coupling system[C]//3rd International Conference on Materials Engineering, Manufacturing Technology and Control, Atlantis, 2016: 644-647. [40] 彭克, 张聪, 徐丙垠. 多能协同综合能源系统示范工程现状与展望[J]. 电力自动化设备, 2017, 37(6): 3-10. Peng Ke, Zhang Cong, Xu Bingyin.Status and prospects of demonstration projects of multi-energy cooperative integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 3-10. [41] 蔡世超. 多能互补分布式能源系统架构及综合能源管理系统研究[J]. 吉林电力, 2018, 46(1): 1-4. Cai Shichao.Research on multi-energy complementary distributed energy system architecture and integrated energy management system[J]. Jilin Electric Power, 2018, 46(1): 1-4. [42] 余晓丹, 徐宪东, 陈硕翼. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi.Brief introduction of integrated energy system and energy internet[J]. Journal of Electrical Engineering and Technology, 2016, 31(1): 1-13. [43] 李洋, 吴鸣, 周海明. 基于全能流模型的区域多能源系统若干问题探讨[J]. 电网技术, 2015, 39(8): 2230-2237. Li Yang, Wu Ming, Zhou Haiming.Discussion on several issues of regional multi-energy system based on the all-energy flow model[J]. Power System Technology, 2015, 39(8): 2230-2237. [44] 钟迪, 李启明, 周贤. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电, 2018, 47(2): 1-5, 55. Zhong Di, Li Qiming, Zhou Xian.Research status and development trend of key technologies for comprehensive utilization of multi-energy complementary energy[J]. Thermal Power Generation, 2018, 47(2): 1-5, 55. [45] 刘秀如. 多能互补集成优化系统分析与展望[J]. 节能, 2018, 37(9): 28-33. Liu Xiuru.Analysis and prospect of multi-energy complementary integrated optimization system[J]. Energy Conservation, 2018, 37(9): 28-33. [46] Sun Haobo, Tang Yong, Zhong Weizhi.Advanced frequency control strategy for large-scale wind power cluster interconnected systems based on distributed model predictive control[J]. Proceedings of The Chinese Society for Electrical Engineering, 2017, 37(s): 6291-6302. [47] Kong Xiaobing, Liu Xiangjie, Han Mei.Hierarchical hierarchical distributed predictive control of wind-solar hybrid power generation system[J]. Scientia Sinica Information, 2018, 61(48): 1316-1332. [48] Moghadam R, Modares H.Resilient adaptive optimal control of distributed multi-agent systems using reinforcement learning[J]. IET Control Theory & Applications, 2018, 12(16): 2165-2174. [49] Xi Lei, Chen Jianfeng, Huang Yuehua.Intelligent power generation control method based on multi-agent reinforcement learning with time tunnel idea(in Chinese)[J]. Science China Technological Sciences, 2018, 48(2): 441-456. [50] Yin Linfei, Yu Tao, Zhang Xiaoshun.Relaxed deep learning for real-time economic generation dispatch and control with unified time scale[J]. Energy, 2018, 149: 11-23. [51] 程思举, 杨建华, 肖达强. 基于多指标评价的清洁能源互补优选策略[J]. 电气技术, 2020, 21(1): 25-30. Cheng Siju, Yang Jianhua, Xiao Daqiang.Complementary clean energy optimization strategies based on multi-index evaluation[J]. Electrical Technology, 2020, 21(1): 25-30. [52] 席磊, 余璐, 张弦. 基于深度强化学习的泛在电力物联网综合能源系统的自动发电控制[J]. 中国科学: 技术科学, 2020, 50(2): 221-234. Xi Lei, Yu Lu, Zhang Xian.Automatic power generation control of ubiquitous electric power IoT integrated energy system based on deep reinforcement learning[J]. Science in China: Technical Science, 2020, 50(2): 221-234. [53] 李阳, 郇嘉嘉, 曹华珍. 基于综合能源协同优化的配电网规划策略[J]. 电网技术, 2018, 42(5): 1393-1400. Li Yang, Tong Jiajia, Cao Huazhen.Distribution network planning strategy based on comprehensive energy collaborative optimization[J]. Power System Technology, 2018, 42(5): 1393-1400. [54] Sanjari M J, Karami H.Application of hyper-spherical search algorithm for optimal energy resources dispatch in residential microgrids[J]. Applied Soft Computing, 2015, 37(2): 15-23. [55] 郝超超, 李晓明, 刘胜. 基于MILP 模型的多主体平衡的微网日前最优调度[J]. 电力系统保护与控制, 2019, 47(6): 32-39. Hao Chaochao, Li Xiaoyang, Liu Sheng.Optimal day-to-day scheduling of microgrids with multi-agent balance based on MILP model[J]. Power System Protection and Control, 2019, 47(6): 32-39. [56] 叶林, 屈晓旭, 么艳香. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164. Ye Lin, Qu Xiaoxu, Mo Yanxiang.Analysis of daytime timescale operation characteristics of wind-water-multiple-energy complementary power generation system[J]. Automation of Electric Power Systems, 2018, 42(4): 158-164. [57] 李建林, 修晓青. 能源互联网中储能系统发展趋势分析[J]. 电气应用, 2016, 35(16): 18-23. Li Jianlin, Xiu Xiaoqing.Analysis on the development trend of energy storage system in energy internet[J]. Electric Application, 2016, 35(16): 18-23. [58] 刘畅, 卓建坤, 赵东明. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. Liu Chang, Zhuo Jiankun, Zhao Dongming.Review of research on flexible and safe operation of renewable energy microgrids using energy storage systems[J]. Journal of Chinese Electrical Engineering Science, 2020, 40(1): 1-18, 369. [59] Patrício R A, Sacramento E M.Wind hydrogen energy system and the gradual replacement of natural gas in the state of Ceara Brazil[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7355-7364. [60] 王冰, 侍崇诗, 黄明宇. 燃料电池供氢系统的研究进展[J]. 现代化工, 2018, 38(1): 35-39, 41. Wang Bing, Shi Chongshi, Huang Mingyu.Research progress of fuel cell hydrogen supply system[J]. Modern Chemical Industry, 2018, 38(1): 35-39, 41. [61] 郭梦婕, 严正, 周云. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53(1): 115-123, 161. Guo Mengjie, Yan Zheng, Zhou Yun.Optimized operation of integrated energy system containing wind power hydrogen production unit[J]. China Electric Power, 2020, 53(1): 115-123, 161. [62] 杨静怡. 储氢材料的研究及其进展[J]. 现代化工, 2019, 39(10): 51-55. Yang Jingyi.Research and progress of hydrogen storage materials[J]. Modern Chemical Industry, 2019, 39(10): 51-55. [63] Hirscher M, Yartys V A, Baricco M.Materials for hydrogen-based energy storage-past, recent progress and future outlook[J]. Journal of Alloys and Compounds, 2020, 827(38): 153548. [64] 李瑞民, 张新敬, 徐玉杰. 风光互补系统中混合储能容量优化配置研究[J]. 储能科学与技术, 2019, 8(3): 512-522. Li Ruimin, Zhang Xinjing, Xu Yujie.Research on optimal allocation of hybrid energy storage capacity in wind-solar hybrid system[J]. Energy Storage Science and Technology, 2019, 8(3): 512-522. [65] 戈阳阳, 周正道, 王琪玮. 微电网并网/孤岛转换安全域分析[J]. 可再生能源, 2019, 37(4): 552-557. Ge Yangyang, Zhou Zhengdao, Wang Qiwei.Security domain analysis of microgrid grid-connected /island conversion[J]. Renewable Energy, 2019, 37(4): 552-557. [66] 王卫国, 朱俊飞, 丁朝辉. 孤网运行状态下储能系统容量配置研究[J]. 通信电源技术, 2020, 37(3): 17-18. Wang Weiguo, Zhu Junfei, Ding Chaohui.Research on capacity allocation of energy storage system in isolated state[J]. Telecom Power Technologies, 2020, 37(3): 17-18. [67] 陈柏翰, 冯伟, 孙凯. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 34(15): 3231-3243. Chen Baohan, Feng Wei, Sun Kai.Multi-energy storage and island operation optimization scheduling method for combined heat and power system[J]. Journal of Electrical Engineering and Technology, 2019, 34(15): 3231-3243. [68] 崔明勇, 王楚通, 王玉翠. 独立模式下微网多能存储系统优化配置[J]. 电力系统自动化, 2018, 42(4): 30-38, 54. Cui Mingyong, Wang Chutong, Wang Yucui.Optimal configuration of microgrid multi-energy storage system in independent mode[J]. Automation of Electric Power Systems, 2018, 42(4): 30-38, 54. [69] Georgios N P.Internal dispatch for RES-storage hybrid power stations in isolated grids[J]. Renewable Energy, 2020, 147(1): 2141-2150. [70] Yoshizawa S, Ito M.Multipurpose control and planning method for battery energy storage systems in distribution network with photovoltaic plant[J]. International Journal of Electrical Power & Energy Systems, 2020, 116(54): 105485. [71] Teketay Mulu Bzea, Wei Binwu, Cheng Chenkuo.Optimal configuration with capacity analysis of a hybrid renewable energy and storage system for an island application[J]. Energies, 2020, 13(1): 8. [72] 李建林, 牛萌, 周喜超. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao.Energy storage capacity planning and investment benefit analysis of micro-energy systems in Energy Internet[J]. Journal of Electrical Engineering and Technology, 2020, 35(4): 874-884. [73] 贾雨龙, 米增强, 刘力卿. 分布式储能系统接入配电网的容量配置和有序布点综合优化方法[J]. 电力自动化设备, 2019, 39(4): 1-7, 16. Jia Yulong, Mi Zengqiang, Liu Liqing.Comprehensive optimization method for capacity allocation and orderly layout of distributed energy storage systems connected to distribution networks[J]. Electric Power Automation Equipment, 2019, 39(4): 1-7, 16. [74] Donado K, Nararro L, Christian G Q M, et al. A multi-objective optimization tool for proper configuration of renewable hybrid energy systems[J]. Energies, 2020, 13(1): 26. [75] Hou P, Enevoldsen P, Eichman J.Optimizing investments in coupled offshore wind-electrolytic hydrogen storage systems in Denmark[J]. Journal of Power Sources, 2017, 359(48): 186-197. [76] Temiz M, Javani N.Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3457-3469. [77] 吴红霞. 基于直流母线架构的微电网及能量管理系统研究[J]. 电工技术学报, 2018, 33(1): 24-25, 35. Wu Hongxia.Research on micro-grid and energy management system based on DC bus architecture[J]. Journal of Electrical Engineering and Technology, 2018, 33(1): 24-25, 35. [78] 李妍, 彭姚红, 崔寒珺. 多能互补发电的发展及其关键技术[J]. 陕西水利, 2019, 12: 26-28. Li Yan, Peng Yaohong, Cui Hanjun.Development of multi-energy complementary power generation and its key technologies[J]. Shaanxi Water Resources, 2019, 12: 26-28. [79] 田盈, 黄利军, 郭宝甫. 多能互补微电网群能量管理系统设计方案研究及工程应用[J]. 供用电, 2018, 35(2): 63-68. Tian Ying, Huang Lijun, Guo Baofu.Research and engineering application of multi-energy complemen-tary microgrid group energy management system design[J]. Supply and Power, 2018, 35(2): 63-68. [80] 詹国敏, 肖遥, 张弘. 风光柴储智能微电网能量管理控制策略设计[J]. 电器与能效管理技术, 2019(19): 83-90. Zhan Guomin, Xiao Yao, Zhang Hong.Design of energy management control strategy for smart microgrid in wind and solar energy storage[J]. Electric Appliance and Energy Efficiency Management Technology, 2019(19): 83-90. [81] 赵川, 赵明, 路学刚. 大数据背景下多能互补微电网的能量管理系统设计[J]. 数字通信世界, 2019, 2: 158. Zhao Chan, Zhao Ming, Lu Xuegang.Design of energy management system for multi-energy complementary microgrid under big data background[J]. World of Digital Communications, 2019, 2: 158. [82] Cheng Yizhi, Zhang Peichao, Liu Xuezhi.Collaborative autonomous optimization of interconnected multi-energy systems with two-stage transactive control framework[J]. Energies, 2020, 13(1): 171. [83] Xu Yan, Luo Zhao, Zhu Zhendong.A three-stage coordinated optimization scheduling strategy for a CCHP microgrid energy management system[J]. Energy, 2020, 8(2): 245. [84] Liu Guanyu, Sheng Yuan.Research advances towards large-scale solar hydrogen production from water[J]. EnergyChem, 2019, 1(2): 100014. [85] Schuler T, Ciccone J M.Hierarchically structured porous transport layers for polymer electrolyte water electrolysis[J]. Advanced Energy Materials, 2020, 10(2): 1903216. [86] Ji Yu, Hai Jiaomen, Yan Meiqu.Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell. Solid State Ionics[J], 2020, 346: 115203. [87] Ghosh A.Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior[J]. Journal of Applied Polymer Science, 2020, 137(22): 48757. [88] 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19):4071-4083. Sun Hexu, Li Zheng, Chen Aibing, et al.Current status and development trend of wind power hydrogen production technology[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. [89] 王阳. 生物制氢国际态势分析报告[J]. 高科技与产业化, 2020 (1): 47-53. Wang Yang.International situation analysis report of biological hydrogen production[J]. High Technology and Industrialization, 2020 (1): 47-53. [90] Mishra Puranjan.Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass[J]. Energy Strategy Reviews, 2019, 24: 27-37. [91] 黄格省, 阎捷, 师晓玉. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用, 2019, 37(5): 289-296. Huang Gexing, Yan Jie, Shi Xiaoyu.Development status and prospect analysis of new energy hydrogen production technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296. [92] 刘鑫, 胡以怀, 王富伟. 石墨烯在光催化制氢中的应用研究[J]. 炭素技术, 2020, 39(1): 12-18, 43. Liu Xin, Hu Yihuai, Wang Fuwei. Application of graphene in photocatalytic hydrogen production[J]. Carbon Technology, 2020, 39(1): 12-18 , 43. [93] 张剑光. 氢能产业发展展望—制氢与氢能储运[J]. 化工设计, 2019, 29(4): 3-6, 26. Zhang Jianguag.Prospects for the development of hydrogen energy industry-hydrogen production and hydrogen energy storage and transportation[J]. Chemical Engineering Design, 2019, 29(4): 3-6, 26. [94] 王学磊, 马国民. 氢气储存方法及发展[J]. 科技经济导刊, 2018, 26(20): 137. Wang Xuelei, Ma Guomin.Methods and development of hydrogen storage[J]. Journal of Science & Technology and Economy, 2018, 26(20): 137. [95] 王丹, 王成山, 雷杨, 等. 新型城市综合能源系统关键技术展望[J]. 全球能源互联网(英文), 2019, 2(5): 403-413. Wang Dan, Wang Chengshan, Lei Yang, et al.Prospects for key technologies of new-type urban integrated energy system[J]. Global Energy Interconnection, 2019, 2(5): 403-413.