Abstract:Under the background of the rapid development of integrated energy system (IES), a multi-objective planning model of electricity heat hydrogen integrated energy system considering the uncertainty of wind speed and solar radiation is proposed. Firstly, this paper presents the structure framework and key equipment operation strategies of electricity-heat-hydrogen integrated energy system model. With the shortcomings of the existing power to gas (P2G) technology and the combined heat and power (CHP) operation mode, some improvement measures are proposed, such as the hydrogen produced by P2G is preferentially supplied to fuel cell vehicles, and switching CHP operation mode according to the renewable energy output. Secondly, in order to solve the impact of uncertainty of renewable energy output on system planning, the uncertainty scenario description is implemented based on the scenario method. A multi-objective optimal planning method considering the uncertainties of wind speed and solar radiation is proposed, which can deal with the impact of uncertain factors and taking into account the economy, efficiency and reliability. The optimization objectives are the minimum economic cost, the maximum utilization rate of renewable energy and the minimum energy not supply. At last, the improved hybrid multi-objective particle swarm optimization algorithm and fuzzy membership function are used to solve the equipment capacity configuration scheme. The results verify the effectiveness and rationality of the proposed method in this paper.
[1] 董朝阳, 赵俊华, 文福拴, 等. 从智能电网到能源互联网: 基本概念与研究框架[J]. 电力系统自动化, 2014, 38(15): 1-11. Dong Zhaoyang, Zhao Junhua, Wen Fushuan, et al.From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. [2] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy inter- connection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884. [3] 韩佶, 苗世洪, 李超. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [4] Ma Tengfei, Wu Junyong, Hao Liangliang, et al.The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141. [5] 朱青, 曾利华, 寇凤海, 等. 考虑储能并网运营模式的工业园区风光燃储优化配置方法研究[J]. 电力系统保护与控制, 2019, 47(17): 23-31. Zhu Qing, Zeng Lihua, Kou Fenghai, et al.Research on optimal allocation method of wind, photovoltaic, gas turbine and energy storage in industrial parks considering energy storage’s grid-connected oper- ation modes[J]. Power System Protection and Control, 2019, 47(17): 23-31. [6] Zhang Xiaping, Che Liang, Shahidehpour M, et al.Reliability-based optimal planning of electricity and natural gas interconnections for multiple energy hubs[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1658-1667. [7] 罗艳红, 梁佳丽, 杨东升, 等. 计及可靠性的电-气- 热能量枢纽配置与运行优化[J]. 电力系统自动化, 2018, 42(4): 47-54. Luo Yanhong, Liang Jiali, Yang Dongsheng, et al.Configuration and operation optimization of electricity- gas-heat energy hub considering reliability[J]. Auto- mation of Electric Power Systems, 2018, 42(4): 47-54. [8] Elkadeem M R, Abd Elaziz M, Ullah Z, et al.Optimal planning of renewable energy integrated distribution system considering uncertainties[J]. IEEE Access, 2019, 7: 164887-164907. [9] Trainer T.A critique of Jacobson and Delucchi’s proposals for a world renewable energy supply[J]. Energy Policy, 2012, 44: 476-481. [10] 周贤正, 陈玮, 郭创新. 考虑供能可靠性与风光不确定性的城市多能源系统规划[J]. 电工技术学报, 2019, 34(17): 3673-3686. Zhou Xianzheng, Chen Wei, Guo Chuangxin.An urban multi-energy system planning method incor- porating energy supply reliability and wind- photovoltaic generators uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3673-3686. [11] Budischak C, Sewell D, Thomson H, et al.Cost- minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time[J]. Journal of Power Sources, 2013, 225: 60-74. [12] 王芃, 刘伟佳, 林振智, 等. 基于场景分析的风电场与电转气厂站协同选址规划[J]. 电力系统自动化, 2017, 41(6): 20-28. Wang Peng, Liu Weijia, Lin Zhenzhi, et al.Scenario analysis based collaborative site selection planning of wind farms and power-to-gas plants[J]. Automation of Electric Power Systems, 2017, 41(6): 20-28. [13] Pazouki S, Haghifam M R.Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty[J]. Inter- national Journal of Electrical Power & Energy Systems, 2016, 80: 219-239. [14] 李哲, 王成福, 梁军, 等. 计及风电不确定性的电-气-热综合能源系统扩展规划方法[J]. 电网技术, 2018, 42(11): 3477-3485. Li Zhe, Wang Chengfu, Liang Jun, et al.Expansion planning method of integrated energy system con- sidering uncertainty of wind power[J]. Power System Technology, 2018, 42(11): 3477-3485. [15] Roldan C, Minguez R, Garcia-Bertrand R, et al.Robust transmission network expansion planning under correlated uncertainty[J]. IEEE Transactions on Power Systems, 2018, 34(3): 2071-2082. [16] Zhang X, Conejo A J.Robust transmission expansion planning representing long- and short-term uncer- tainty[J]. IEEE Transactions on Power Systems, 2017, 33(2): 1329-1338. [17] 宋璇坤, 辛培哲, 李珊, 等. 考虑多重不确定性因素的分布式电源鲁棒规划方法研究[J]. 智慧电力, 2019, 47(6): 56-63. Song Xuankun, Xin Peizhe, Li Shan, et al.Robust planning method of distributed generation con- sidering multiple uncertainties[J]. Smart Power, 2019, 47(6): 56-63. [18] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543. Diao Hanbin, Li Peiqiang, Wang Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543. [19] 沈海平, 陈铭, 钱磊, 等. 计及电转气耦合的电-气互联系统机组组合线性模型研究[J]. 电力系统保护与控制, 2019, 47(8): 34-41. Shen Haiping, Chen Ming, Qian Lei, et al.Linear model research of unit commitment for integrated electricity and natural-gas systems considering power-to-gas coupling[J]. Power System Protection and Control, 2019, 47(8): 34-41. [20] Zeng Qing, Fang Jiakun, Li Jinghua, et al.Steady- state analysis of the integrated natural gas and electric power system with bi-directional energy con- version[J]. Applied Energy, 2016, 184: 1483-1492. [21] 窦迅, 赵文浩, 郎伊紫禾, 等. 计及电转气技术的天然气-电力耦合系统运行研究综述[J]. 电网技术, 2019, 43(1): 191-199. Dou Xun, Zhao Wenhao, Lang Yizihe, et al.A review of operation of natural gas-electricity coupling system considering power-to-gas technology[J]. Power System Technology, 2019, 43(1): 191-199. [22] 陈泽兴, 林楷东, 张勇军, 等. 电-气互联系统建模与运行优化研究方法评述[J]. 电力系统自动化, 2020, 44(3): 11-23. Chen Zexing, Lin Kaidong, Zhang Yongjun, et al.A review of modeling and optimal operation of inte- grated electricity-gas system[J]. Automation of Electric Power Systems, 2020, 44(3): 11-23. [23] Gotz M, Lefebvre J, Mors F, et al.Renewable power-to-gas: a technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. [24] 许志恒, 张勇军, 陈泽兴, 等. 考虑运行策略和投资主体利益的电转气容量双层优化配置[J]. 电力系统自动化, 2018, 42(13): 76-84. Xu Zhiheng, Zhang Yongjun, Chen Zexing, et al.Bi-level optimal capacity configuration for power to gas facilities considering operation strategy and investment subject benefit[J]. Automation of Electric Power Systems, 2018, 42(13): 76-84. [25] Gabrielli P, Gazzani M, Mazzotti M.Electrochemical conversion technologies for optimal design of decentralized multi-energy systems: modeling frame- work and technology assessment[J]. Applied Energy, 2018, 211: 557-575. [26] Schlachtberger D P, Brown T, Schafer M, et al.Cost optimal scenarios of a future highly renewable european electricity system: exploring the influence of weather data, cost parameters and policy con- straints[J]. Energy, 2018, 163: 100-114. [27] Li Mengxiao, Bai Yunfeng, Zhang Caizhi, et al.Review on the research of hydrogen storage system fast refueling in fuel cell vehicle[J]. International Journal of Hydrogen Energy, 2019, 44: 10677-10693. [28] Mehrjerdi H.Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage[J]. International Journal of Hydrogen Energy, 2019, 44: 11574-11583. [29] 陈柏翰, 冯伟, 孙凯, 等. 冷热电联供系统多元储能及孤岛运行优化调度方法[J]. 电工技术学报, 2019, 38(15): 3231-3243. Chen Pohan, Feng Wei, Sun Kai, et al.Multi-energy storage system and islanded optimal dispatch method of CCHP[J]. Transactions of China Electrotechnical Society, 2019, 38(15): 3231-3243. [30] Duan Junfa, He Yiming, Zhu Hairong, et al.Research progress on performance of fuel cell system utilized in vehicle[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5530-5537. [31] 王泽森, 唐艳梅, 门向阳, 等. 独立海岛终端一体化系统下电动汽车的投放数量规划研究[J]. 中国电机工程学报, 2019, 39(7): 2005-2015. Wang Zesen, Tang Yanmei, Men Xiangyang, et al.Research on the quantity planning of electric vehicle on the isolated island terminal integration system[J]. Proceedings of the CSEE, 2019, 39(7): 2005-2015. [32] 徐宪东, 贾宏杰, 靳小龙, 等. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 35(14): 3634-3642. Xu Xiandong, Jia Hongjie, Jin Xiaolong, et al.Study on hybrid heat-gas-power flow algorithm for inte- grated community energy system[J]. Proceedings of the CSEE, 2015, 35(14): 3634-3642. [33] 朱兰, 王吉, 唐陇军, 等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术, 2019, 43(1): 116-126. Zhu Lan, Wang Ji, Tang Longjun, et al.Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power System Technology, 2019, 43(1): 116-126. [34] 高红均, 刘俊勇, 魏震波, 等. 基于极限场景集的风电机组安全调度决策模型[J]. 电网技术, 2013, 37(6): 1590-1595. Gao Hongjun, Liu Junyong, Wei Zhenbo, et al.Wind turbine safety dispatching decision model based on limit scenario set[J]. Power System Technology, 2013, 37(6): 1590-1595. [35] 赵昱宣, 韩畅, 林振智, 等. 含可再生能源的电力系统两阶段核心骨干网架优化策略[J]. 电网技术, 2019, 43(2): 371-380. Zhao Yuxuan, Han Chang, Lin Zhenzhi, et al.Two- stage core backbone network optimization strategy for power systems with renewable energy[J]. Power System Technology, 2019, 43(2): 371-380. [36] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimi- zation[J]. IEEE Transactions on Evolutionary Com- putation, 2004, 8(3): 256-279. [37] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411. Wu Xiaogang, Liu Zongqi, Tian Liting, et al.Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer[J]. Power System Technology, 2014, 38(12): 3405-3411. [38] 侯慧, 薛梦雅, 陈国炎, 等. 计及电动汽车充放电的微电网多目标分级经济调度[J]. 电力系统自动化, 2019, 43(17): 55-62. Hou Hui, Xue Mengya, Chen Guoyan, et al.Multi- objective hierarchical economic dispatch for micro- grid considering charging and discharging of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(17): 55-62.