Capacity Planning Method of Distributed Integrated Energy System with Solar Thermal Composite Compressed Air Energy Storage
Fang Le1, Liu Chengkui2,3, Chen Xiaotao1, Ma Linrui1, Mei Shengwei1
1. New Energy (Photovoltaic) Industry Research Center Qinghai Key Lab of Efficient Utilization of Clean Energy Qinghai University Xining 810016 China; 2. Qinghai Building Materials Research Institute Co. Ltd Xining 810008 China; 3. Qinghai Plateau Key Laboratory of Green Building and Ecological Community Xining 810008 China
Abstract:The development of distributed integrated energy system (DIES) has played a key role in promoting clean energy accommodation and improving comprehensive energy utilization. Based on the abundant solar energy resources and the characteristics of the thermal and electrical coupling DIES in the Qinghai area, this paper proposed a solar thermal composite advanced adiabatic compressed air energy storage (ST-AA-CAES) as an energy hub in DIES. Firstly, DIES was proposed for application scenario of agricultural parks, and the operation constraint model of its subsystems were described. Secondly, the capacity planning model of the DIES, with minimizing the overall investment and operating cost as objective function, was established. The constraint of optimization model can transform into a mixed integer linear programming model, which can be solved by commercial solver. Finally, the effectiveness of proposed model was verified by the study case.
方乐, 刘成奎, 陈晓弢, 麻林瑞, 梅生伟. 含光热复合压缩空气储能的分布式综合能源系统容量规划方法[J]. 电工技术学报, 2022, 37(23): 5933-5943.
Fang Le, Liu Chengkui, Chen Xiaotao, Ma Linrui, Mei Shengwei. Capacity Planning Method of Distributed Integrated Energy System with Solar Thermal Composite Compressed Air Energy Storage. Transactions of China Electrotechnical Society, 2022, 37(23): 5933-5943.
[1] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. Zhang Shenxi, Wang Danyang, Cheng Haozhong, et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. [2] 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10): 2893-2907, 3140. Mei Shengwei, Li Rui, Chen Laijun, et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceedings of the CSEE, 2018, 38(10): 2893-2907, 3140. [3] 赵冬梅, 王浩翔, 陶然. 计及风电-负荷不确定性的风-火-核-碳捕集多源协调优化调度[J]. 电工技术学报, 2022, 37(3): 707-718. Zhao Dongmei, Wang Haoxiang, Tao Ran.A multi-source coordinated optimal scheduling model considering wind-load uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 707-718. [4] 梅生伟, 薛小代, 陈来军. 压缩空气储能技术及其应用探讨[J]. 南方电网技术, 2016, 10(3): 11-15, 31. Mei Shengwei, Xue Xiaodai, Chen Laijun.Discussion on compressed air energy storage technology and its application[J]. Southern Power System Technology, 2016, 10(3): 11-15, 31. [5] 周长城, 马溪原, 郭祚刚, 等. 面向工程应用的用户级综合能源系统规划[J]. 电工技术学报, 2020, 35(13): 2843-2854. Zhou Changcheng, Ma Xiyuan, Guo Zuogang, et al.User-level integrated energy system planning for engineering applications[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2843-2854. [6] 蒋向兵, 汤波, 余光正, 等. 面向新能源就地消纳的园区储能与电价协调优化方法[J]. 电力系统自动化, 2022, 46(5): 51-64. Jiang Xiangbing, Tang Bo, Yu Guangzheng, et al.Coordination and optimization method of park-level energy storage and electricity price for local accommodation of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(5): 51-64. [7] 王昀, 谢海鹏, 孙啸天, 等. 计及激励型综合需求响应的电-热综合能源系统日前经济调度[J]. 电工技术学报, 2021, 36(9): 1926-1934. Wang Yun, Xie Haipeng, Sun Xiaotian, et al.Day-ahead economic dispatch for electricity-heating integrated energy system considering incentive integrated demand response[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1926-1934. [8] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrote-chnical Society, 2020, 35(4): 874-884. [9] Li Zhiao, Chen Laijun, Wei Wei, et al.Risk constrained self-scheduling of AA-CAES facility in electricity and heat markets: a distributionally robust optimization approach[J]. CSEE Journal of Power and Energy Systems, 2021Risk constrained self-scheduling of AA-CAES facility in electricity and heat markets: a distributionally robust optimization approach[J]. CSEE Journal of Power and Energy Systems, 2021: 1-9. http://dx.doi.org/10.17775/CSEEJPES.2020.06130. [10] 李建林, 崔宜琳, 王力. 储能学科建设探索及相关建议[J/OL]. 中国电机工程学报: 1-8[2022-06-16]. http://dx.doi.org/10.13334/j.0258-8013.pcsee.212203. Li Jianlin, Cui Yilin, Wang Li, et al.Exploration and suggestions on the construction of energy storage discipline[J]. Proceedings of the CSEE: 1-8[2022-06-16]. Exploration and suggestions on the construction of energy storage discipline[J]. Proceedings of the CSEE: 1-8[2022-06-16]. http://dx.doi.org/10.13334/j.0258-8013.pcsee.212203. [11] 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 164-171. Xue Xiaodai, Mei Shengwei, Lin Qiyou, et al.Energy Internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171. [12] 中盐金坛盐化有限公司. 金坛盐穴压缩空气储能国家试验示范项目并网试验成功[J]. 中国盐业, 2021(19): 6-7. [13] Mei Shengwei, Li Rui, Xue Xiaodai, et al.Paving the way to smart micro energy grid: concepts, design principles, and engineering practices[J]. CSEE Journal of Power and Energy Systems, 2017, 3(4): 440-449. [14] 宁光涛, 李琳玮, 何礼鹏, 等. 面向绿色海岛微型综合能源系统的储能系统容量规划方法[J]. 电力自动化设备, 2021, 41(2): 8-15. Ning Guangtao, Li Linwei, He Lipeng, et al.Capacity planning method of energy storage system for micro integrated energy system in environmental friendly Islands[J]. Electric Power Automation Equipment, 2021, 41(2): 8-15. [15] Li Yaowang, Miao Shihong, Zhang Shixu, et al.A reserve capacity model of AA-CAES for power system optimal joint energy and reserve scheduling[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 279-290. [16] Zhao Pan, Wang Peizi, Xu Wenpan, et al.The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis[J]. Energy, 2021, 215: 119167. [17] Yu Qihui, Tian Li, Li Xiaodong, et al.Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy[J]. Energies, 2022, 15(13): 4637. [18] 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统运行策略研究[J]. 太阳能学报, 2021, 42(1): 423-430. Han Zhonghe, Wang Shan, Hu Zhiqiang, et al.Study on operation strategy of AA-CAES+CSP system[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 423-430. [19] 蔡杰, 张松岩, 杜治, 等. 含光热集热模块的先进绝热压缩空气储能系统容量配置策略[J]. 电力自动化设备, 2020, 40(7): 165-173. Cai Jie, Zhang Songyan, Du Zhi, et al.Capacity allocation strategy of advanced adiabatic compressed air energy storage system with solar thermal collector module[J]. Electric Power Automation Equipment, 2020, 40(7): 165-173. [20] 陈晓弢, 王国华, 司杨, 等. 改进的光热复合压缩空气储能系统设计方案及其仿真分析[J]. 电力自动化设备, 2018, 38(5): 20-26. Chen Xiaotao, Wang Guohua, Si Yang, et al.Improved design scheme of solar thermal compressed air energy storage system and its simulation analysis[J]. Electric Power Automation Equipment, 2018, 38(5): 20-26. [21] Wu Yunna, Zhang Ting.Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model[J]. Energy, 2021, 223: 120057. [22] Mei Shengwei, Wang Junjie, Tian Fang, et al.Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC-500[J]. Science China Technological Sciences, 2015, 58(4): 600-611. [23] Sadeghi S, Askari I B.Prefeasibility techno-economic assessment of a hybrid power plant with photovoltaic, fuel cell and compressed air energy storage (CAES)[J]. Energy, 2019, 168: 409-424. [24] Luo Xing, Wang Jihong, Krupke C, et al.Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage[J]. Applied Energy, 2016, 162: 589-600. [25] Cocco D, Serra F.Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants[J]. Energy, 2015, 81: 526-536. [26] 崔杨, 张汇泉, 仲悟之, 等. 基于分时能量互补的风电-光热联合外送容量优化配置方法[J]. 电网技术, 2019, 43(11): 3875-3882. Cui Yang, Zhang Huiquan, Zhong Wuzhi, et al.An optimization method to determine power delivery capacity of combined wind-CSP system based on time-sharing energy complementation[J]. Power System Technology, 2019, 43(11): 3875-3882. [27] 潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J/OL]. 电工技术学报, 2022: 1-14[2022-06-16]. http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.211725. Pan Chao, Fan Gongbo, Wang Jinpeng, et al. Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J/OL]. Transactions of China Electrotechnical Society, 2022: 1-14[2022-06-16]. http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.211725. [28] 吴晨曦, 陈泽昊, 张杰, 等. 考虑先进绝热压缩空气储能的风力发电系统成本/供电可靠性评估[J]. 电力自动化设备, 2020, 40(2): 62-71, 75. Wu Chenxi, Chen Zehao, Zhang Jie, et al.Cost/power supply reliability assessment of wind power generation system considering advanced adiabatic compressed air energy storage[J]. Electric Power Automation Equipment, 2020, 40(2): 62-71, 75. [29] 陈晓弢. 分布式压缩空气储能系统能效提升研究[D]. 北京: 清华大学, 2020. [30] 齐长红, 路河, 田炜玮. 夜温对草莓产量和品质的影响探讨[J]. 农业工程技术(温室园艺), 2008, 28(6): 46-47.