Capacity Optimization of Distributed PV and Shared Energy Storage of Prosumer Community Based on Cooperative Game
Wang Zaichuang1, Chen Laijun2, Li Xiaozhu3, Mei Shengwei1,2,3
1. College of Electrical Engineering Xinjiang University Urumqi 830046 China; 2. New Energy Photovoltaic Center of Qinghai University Xining 810016 China; 3. Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:Distributed PV-prosumer community with shared energy storage is an effective way to improve the utilization of energy storage and PV , reduce the investment costs of prosumers. Capacity configuration schemes for shared energy storage and PV within communities need to consider the impact of investment economics and the interaction of the interests of different investment agents. Aiming at this challenge, a collaborative planning method of shared energy storage and distributed PV based on cooperative game is proposed .First, the strategy set and payment function of distributed PV-prosumers and shared energy storage operators are constructed in the framework of cooperative game. Second, the equilibrium strategies of each player under different cooperation models are analyzed, and the improved Shapley value method is used to identify the contribution of different player to the cooperation benefits. Finally, a simulation is carried out based on the actual PV data of a certain place, which shows that the proposed model can maximize the interests of all players and ensure the comprehensive and efficient utilization of resources.
王再闯, 陈来军, 李笑竹, 梅生伟. 基于合作博弈的产销者社区分布式光伏与共享储能容量优化[J]. 电工技术学报, 2022, 37(23): 5922-5932.
Wang Zaichuang, Chen Laijun, Li Xiaozhu, Mei Shengwei. Capacity Optimization of Distributed PV and Shared Energy Storage of Prosumer Community Based on Cooperative Game. Transactions of China Electrotechnical Society, 2022, 37(23): 5922-5932.
[1] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5505. Chen Guoping, Dong Yu, Liang Zhifeng.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5505. [2] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. [3] 张迪, 苗世洪, 周宁, 等. 分布式发电市场化环境下各交易主体响应行为模型[J]. 电工技术学报, 2020, 35(15): 3327-3340. Zhang Di, Miao Shihong, Zhou Ning, et al.Research on response behavior model of trading entities considering the marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3327-3340. [4] 涂青宇, 苗世洪, 张迪, 等. 分布式发电市场化环境下基于价格型需求响应的农村光伏交易模式研究[J]. 电工技术学报, 2020, 35(22): 4784-4797. Tu Qingyu, Miao Shihong, Zhang Di, et al.Research on rural photovoltaic trading pattern based on price-based demand response under marketization environment of distributed generation[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4784-4797. [5] Rodrigues D L, Ye Xianming, Xia Xiaohua, et al.Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community[J]. Applied Energy, 2020, 262: 114498. [6] Huang Pei, Sun Yongjun, Lovati M, et al.Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements[J]. Energy, 2021, 222: 119931. [7] 胡国珍, 段善旭, 蔡涛, 等. 基于液流电池储能的光伏发电系统容量配置及成本分析[J]. 电工技术学报, 2012, 27(5): 260-267. Hu Guozhen, Duan Shanxu, Cai Tao, et al.Sizing and cost analysis of photovoltaic generation system based on vanadium redox battery[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 260-267. [8] Hernández J C, Sanchez-Sutil F, Muñoz-Rodríguez F J. Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency[J]. Energy, 2019, 186: 115827. [9] 陈岑, 武传涛, 康慨, 等. 基于改进Owen值法的分布式储能双层合作博弈优化策略[J]. 中国电机工程学报, 2022, 42(11): 3924-3936. Chen Cen, Wu Chuantao, Kang Kai, et al.Optimal strategy of distributed energy storage two-layer cooperative game based on improved Owen-value method[J]. Proceedings of the CSEE, 2022, 42(11): 3924-3936. [10] 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(4): 360-366. Sun Cai, Chen Laijun, Qiu Xinjie, et al.A generation-side shared energy storage planning model based on cooperative game[J]. Journal of Global Energy Interconnection, 2019, 2(4): 360-366. [11] Kalathil D, Wu Chenye, Poolla K, et al.The sharing economy for the electricity storage[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 556-567. [12] 叶晨, 王蓓蓓, 薛必克, 等. 考虑超售的共享分布式光储混合运营模式协同策略研究[J]. 电工技术学报, 2022, 37(7): 1836-1846. Ye Chen, Wang Beibei, Xue Bike, et al.Study on the coordination strategy of sharing distributed photovoltaic energy storage hybrid operation mode considering overselling[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1836-1846. [13] He Hongjie, Cheng Liang, Zhu Huan, et al.Optimal capacity pricing and sizing approach of cloud energy storage: a Bi-level model[C]//2019 IEEE Power & Energy Society General Meeting, Atlanta, GA, USA, 2019: 1-5. [14] Mei Shengwei, Wang Yingying, Liu Feng, et al.Game approaches for hybrid power system planning[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 506-517. [15] 葛少云, 李吉峰, 刘洪, 等. 考虑智能建筑特性的多微网端对端能量交易方法[J]. 电力系统自动化, 2021, 45(6): 203-214. Ge Shaoyun, Li Jifeng, Liu Hong, et al.Peer-to-peer energy trading method for multiple microgrids considering characteristics of smart building[J]. Automation of Electric Power Systems, 2021, 45(6): 203-214. [16] 刘念, 赵璟, 王杰, 等. 基于合作博弈论的光伏微电网群交易模型[J]. 电工技术学报, 2018, 33(8): 1903-1910. Liu Nian, Zhao Jing, Wang Jie, et al.A trading model of PV microgrid cluster based on cooperative game theory[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1903-1910. [17] 梅生伟, 刘锋, 魏韡. 工程博弈论基础及电力系统应用[M]. 北京: 科学出版社, 2016. [18] Lombardi P, Schwabe F.Sharing economy as a new business model for energy storage systems[J]. Applied Energy, 2017, 188: 485-496.