Optimal Configuration Method of Photovoltaic Intelligent Edge Terminal Based on Improved Coyote Optimization Algorithm
Liu Jiaheng1, Zhang Ming2, Ge Leijiao1, Ji Wenlu2, Wang Bo3, Fang Lei2, Zhang Weiya2
1. Key Laboratory of Smart Grid of Ministry of Education Tianjin University Tianjin 300072 China; 2. Nanjing Power Supply Company State Grid Jiangsu Electric Power Co. Ltd Nanjing 210005 China; 3. School of Electrical and Engineering Wuhan University Wuhan 430072 China
Abstract:Photovoltaic intelligent edge terminal (PV IET) is one of the important devices to achieve efficient and intelligent operation and maintenance of distributed PV large-scale access to distribution network. In this paper, a mathematical model for optimizing the configuration of PV IETs is presented, and an improved coyote optimization algorithm (ICOA) is proposed to achieve an accurate solution of the model. In order to solve the problems of insufficient precision of the coyote optimization algorithm and slow convergence speed, a new social mutual assistance coyote growth strategy and the optimal coyote single-dimensional disturbance strategy in group are proposed, and simulated annealing and adaptive elite retention strategies are introduced to make the algorithm more suitable the engineering issues raised in this article. Realize the three aspects of the number, location and connection mode of PVIET to the PV power station. Finally, the validity of the model is verified by the improved IEEE69 cases, and the superiority of the ICOA in accuracy, stability and convergence is verified by the comparison of algorithms.
[1] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50-57. Ji Zige, Li Hui, Liu Sijia, et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power System Protection and Control, 2020, 48(7): 50-57. [2] 赖昌伟, 黎静华, 陈博, 等.光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217. Lai Changwei, Li Jinghua, Chen Bo, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217. [3] 徐瑞东, 陈昊, 胡义华, 等. 基于高斯过程的光伏阵列故障定位[J].电工技术学报, 2013, 28(6): 249-256. Xu Ruidong, Chen Hao, Hu Yihua, et al.Fault location of photovoltaic array based on Gaussian process[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 249-256. [4] 李元良, 丁坤, 陈富东, 等. 基于快速过采样主成分分析法的光伏阵列故障诊断[J]. 电网技术, 2019, 43(1): 308-315. Li Yuanliang, Ding Kun, Chen Fudong, et al.Fault diagnosis method of PV array based on fast OS-PCA[J]. Power System Technology, 2019, 43(1): 308-315. [5] 陈凌, 韩伟, 张经炜. 基于数据融合的光伏组件故障诊断[J]. 电网技术, 2017, 41(6): 1864-1873. Chen Ling, Han Wei, Zhang Jingwei.PV module fault diagnosis based on data fusion[J]. Power System Technology, 2017, 41(6): 1864-1873. [6] 陈得宇, 沈继红, 张仁忠, 等. 配电网故障可观测的实现及馈线终端单元配置方法[J]. 电网技术, 2011, 35(2): 94-99. Chen Deyu, Shen Jihong, Zhang Renzhong, et al.Realization of fault observability of distribution system and corresponding optimal configuration method of feeder terminal units[J]. Power System Technology, 2011, 35(2): 94-99. [7] 郑玲玲, 王铮, 杨丽徙. 不同网络结构及可靠性要求环境下FTU的最优配置[J]. 电力系统保护与控制, 2015, 43(24): 69-74. Zheng Lingling, Wang Zheng, Yang Lixi.FTU optimal configuration under different distribution network structures and reliability requirement[J]. Power System Protection and Control, 2015, 43(24): 69-74. [8] 周勐, 么军, 姚远, 等. 基于故障可观性指标的配电网FTU最优配置模型研究[J]. 电力系统保护与控制, 2019, 47(17): 117-124. Zhou Meng, Mo Jun, Yao Yuan, et al.Research on FTU optimal configuration model of distribution network based on fault observability index[J]. Power System Protection and Control, 2019, 47(17): 117-124. [9] 王秋杰, 金涛, 申涛, 等. 利用多因素降维的配电网区段定位完全解析模型[J]. 电工技术学报, 2019, 34(14): 3012-3024. Wang Qiujie, Jin Tao, Shen Tao, et al.A complete analytic model of section location in distribution network based on multi-factor dimensionality deduction[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3012-3024. [10] 李子韵, 成乐祥, 王自桢, 等. 配电自动化终端布局规划方法[J]. 电网技术, 2016, 40(4): 1271-1276. Li Ziyun, Cheng Lexiang, Wang Zizhen, et al.A method of layout planning for distribution automation terminal[J]. Power System Technology, 2016, 40(4): 1271-1276. [11] Xu Junjun, Wu Zaijun, Yu Xinghuo, et al.A new method for optimal FTU placement in distribution network under consideration of power service reliability[J]. Science China: Technological Sciences, 2017, 60(12): 1885-1896. [12] 罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8): 1844-1853. Luo Shenzeng, Li Yinhong, Shi Dongyuan.Wide area monitoring system observability probabilistic evaluation and it’s application in optimal PMU placement[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1844-1853. [13] Aghaei J, Baharvandi A, Rabiee A, et al.Probabilistic PMU placement in electric power networks: an MILP-based multi-objective model[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 332-341. [14] 于华楠, 李永鑫, 王鹤. 基于过完备字典设计的电力系统扰动定位方法[J]. 电工技术学报, 2020, 35(7): 1444-1453. Yu Huanan, Li Yongxin, Wang He.Disturbance location method of power system based on over-complete reconstruction dictionary design[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1444-1453. [15] Pierezan J, Dos Santos Coelho L. Coyote optimization algorithm: a new metaheuristic for global optimization problems[C]//2018 IEEE Congress on Evolutionary Computation(CEC), Rio de Janeiro, Brazil, 2018, DOI: 10.1109/CEC.2018.8477769 . [16] Abdelwanis M I, Abaza A, El-Sehiemy R A, et al. Parameter estimation of electric power transformers using coyote optimization algorithm with experimental verification[J]. IEEE Access, 2020, 8: 50036-50044. [17] Chang G W, Chinh N Cong.Coyote optimization algorithm-based approach for strategic planning of photovoltaic distributed generation[J]. IEEE Access, 2020, 8: 36180-36190. [18] Güvenç U, Kaymaz E.Economic dispatch integrated wind power using coyote optimization algorithm[C]// International Istanbul Smart Grids and Cities Congress and Fair(ICSG), Istanbul, Turkey, 2019. [19] 张新明, 王豆豆, 陈海燕, 等. 强化最优和最差狼的郊狼优化算法及其二次指派问题应用[J]. 计算机应用, 2019, 39(10): 2985-2991. Zhang Xinming, Wang Doudou, Chen Haiyan, et al.Best and worst coyotes strengthened coyote optimization algorithm and its application to quadratic assignment problem[J]. Journal of Computer Applications, 2019, 39(10): 2985-2991. [20] 刘任, 李琳, 王亚琦, 等. 基于随机性与确定性混合优化算法的Jiles-Atherton磁滞模型参数提取[J].电工技术学报, 2019, 34(11): 2260-2268. Liu Ren, Li Lin, Wang Yaqi, et al.Parameter extraction for jiles-atherton hysteresis model based on the hybrid technique of stochastic and deterministic optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2260-2268. [21] 王玙, 杨中平, 李峰, 等. 有轨电车混合动力系统能量交互型管理策略与容量配置协同优化研究[J]. 电工技术学报, 2019, 34(8):1780-1788. Wang Yu, Yang Zhongping, Li Feng, et al.Energy management strategy with energy interaction and configuration optimization for the tram’s hybrid storage system[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1780-1788. [22] Mirjalili Seyedali.SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133.