Wide Area Monitoring System Observability Probabilistic Evaluation and It’s Application in Optimal PMU Placement
Luo Shenzeng1, Li Yinhong2, Shi Dongyuan2
1. Central China Power Dispatching and Control Branch of State Grid Company of China Wuhan 430077 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:An observability evaluation method for wide area monitoring system (WAMS) based on node probabilistic observability was proposed, to quickly and accurately assess the WAMS observability from the perspective of reliability. The influencing factors of node observability were analyzed, and the processing approach based on virtual phasor measurement unit (PMU) node was proposed to effectively take into account the impacts of zero-injected node on node observability. Considering PMU and transmission lines availabilities, the probability of node losing observability was obtained. WAMS observability was evaluated based on node probabilistic observability. Its two typical applications in optimal PMU placement were analyzed: ① optimal selection of multi-solution; ② further PMU placement to improve reliability after WAMS is observable. Simulation results based on IEEE 14-bus system and IEEE 57-bus system demonstrate the effectiveness of the proposed evaluation method. Comparisons show that the proposed method has the advantages of accurate calculation and small computation. Applying the proposed WAMS observability evaluation method in optimal PMU placement can further improve the reliability of WAMS observability.
罗深增, 李银红, 石东源. 广域测量系统可观性概率评估及其在PMU优化配置中的应用[J]. 电工技术学报, 2018, 33(8): 1844-1853.
Luo Shenzeng, Li Yinhong, Shi Dongyuan. Wide Area Monitoring System Observability Probabilistic Evaluation and It’s Application in Optimal PMU Placement. Transactions of China Electrotechnical Society, 2018, 33(8): 1844-1853.
[1] Ree J D L, Centeno V, Thorp J S, et al. Synchronized phasor measurement applications in power systems[J]. IEEE Transactions on Smart Grid, 2010, 1(1): 20-27. [2] 赵晋泉, 邓晖, 吴小辰, 等. 基于广域响应的电力系统暂态稳定控制技术评述[J]. 电力系统保护与控制, 2016, 44(5): 1-9. Zhao Jinquan, Deng Hui, Wu Xiaochen, et al.Review on power system transient stability control tech- nologies based on PMU/WAMS[J]. Power System Protection and Control, 2016, 44(5): 1-9. [3] 顾雪平, 李扬, 吴献吉. 基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J]. 电工技术学报, 2013, 28(10): 271-279. Gu Xueping, Li Yang, Wu Xianji.Transient stability assessment of power systems based on local learning machine and bacterial colony chemotaxis algo- rithm[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 271-279. [4] 薛安成, 张兆阳, 毕天姝. 基于自适应抗差最小二乘的线路正序参数在线辨识方法[J]. 电工技术学报, 2015, 30(8): 202-209. Xue Ancheng, Zhang Zhaoyang, Bi Tianshu.Online identification of transmission line positive-sequence parameters based on adaptive robust least squares[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 202-209. [5] 毕天姝, 陈亮, 薛安成, 等. 基于鲁棒容积卡尔曼滤波器的发电机动态状态估计[J]. 电工技术学报, 2016, 31(4): 163-169. Bi Tianshu, Chen Liang, Xue Ancheng, et al.Dynamic state estimator for synchronous machines based on robust cubature Kalman filter[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 163-169. [6] 丁宏恩, 戴则梅, 霍雪松, 等. 基于混合量测的二次线性状态估计方法及其工程应用[J]. 电力系统保护与控制, 2016, 44(13): 163-170. Ding Hongen, Dai Zemei, Huo Xuesong, et al.Hybrid measurement based secondary linear state estimation method and its engineering application[J]. Power System Protection and Control, 2016, 44(13): 163-170. [7] Manousakis N M, Korres G N, Georgilakis P S.Taxonomy of PMU placement methodologies[J]. IEEE Transactions on Power Systems, 2012, 27(2): 1070-1077. [8] 蒋正威, 曹一家, 孙维真. 基于01整数规划的多目标最优PMU配置算法[J]. 电力系统保护与控制, 2008, 36(21): 12-17. Jiang Zhengwei, Cao Yijia, Sun Weizhen.Multi- object PMU optimization placement algorithm based on 01 integer program[J]. Power System Protection and Control, 2008, 36(21): 12-17. [9] Aminifar F, Khodaei A, Fotuhi-Firuzabad M, et al.Contingency-constrained PMU placement in power networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 516-523. [10] 何昆仑, 张庆超, 郑明忠. 模拟通道数最小的PMU优化配置方法[J]. 电力系统保护与控制, 2015, 43(24): 14-18. He Kunlun, Zhang Qingchao, Zheng Mingzhong.Optimal PMU placement with minimum analog channels[J]. Power System Protection and Control, 2015, 43(24): 14-18. [11] 鲍威, 蒋雪冬, 陈利跃, 等. 考虑观测冗余度最大的0-1线性规划电力系统PMU最优配置[J]. 电网技术, 2014, 38(8): 2051-2056. Bao Wei, Jiang Xuedong, Chen Liyue, et al.A 0-1 linear programming approach to optimal phasor measurement units placement considering maximized system observability redundancy[J]. Power System Technology, 2014, 38(8): 2051-2056. [12] Pal A, Sanchez-Ayala G A, Centeno V A, et al. A PMU placement scheme ensuring real-time moni- toring of critical buses of the network[J]. IEEE Transa- ctions on Power Delivery, 2014, 29(2): 510-517. [13] Kavasseri R, Sirnivasan S K.Joint placement of phasor and power flow measurements for observa- bility of power systems[J]. IEEE Transactions on Power Systems, 2011, 26(4): 1929-1936. [14] Koutsoukis N C, Manousakis N M, Georgilakis P S, et al.Numerical observability method for optimal phasor measurement units placement using recursive tabu search method[J]. IET Generation Transmission & Distribution, 2013, 7(4): 347-356. [15] 赵媛媛, 袁澎, 艾芊, 等. 考虑拓扑约束并采用改进遗传算法的PMU优化配置[J]. 电网技术, 2014, 38(8): 2063-2070. Zhao Yuanyuan, Yuan Peng, Ai Qian, et al.Improved genetic algorithm based optimal configuration of PMUs considering topological constraints[J]. Power System Technology, 2014, 38(8): 2063-2070. [16] 徐岩, 应璐曼, 王增平. 基于最大树理论的分阶段相量测量单元配置方案[J]. 电工技术学报, 2016, 31(4): 155-162. Xu Yan, Ying Luman, Wang Zengping.Staged phasor measurement unit placement algorithm based on theory of maximum tree[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 155-162. [17] 彭春华. 基于免疫BPSO算法与拓扑可观性的PMU最优配置[J]. 电工技术学报, 2008, 23(6): 119-124. Peng Chunhua.Optimal PMU placement based on Immune BPSO algorithm and topology observa- bility[J]. Transactions of China Electrotechnical Society, 2008, 23(6): 119-124. [18] Gomez O, Portilla C, Rios M A.Reliability analysis of substation monitoring systems based on branch PMUs[J]. IEEE Transactions on Power Systems, 2015, 30(2): 962-969. [19] Aminifar F, Fotuhi-Firuzabad M, Shahidehpour M, et al.Probabilistic multistage PMU placement in electric power systems[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 841-849. [20] Aminifar F, Fotuhi-Firuzabad M, Shahidehpour M, et al.Observability enhancement by optimal PMU placement considering random power system outages[J]. Energy Systems, 2011, 2(1): 45-65. [21] Gomez O, Rios M A, Anders G.Reliability-based phasor measurement unit placement in power systems considering transmission line outages and channel limits[J]. IET Generation Transmission & Distri- bution, 2014, 8(8): 121-130. [22] Aghaei J, Baharvandi A, Rabiee A, et al.Probabilistic PMU placement in electric power networks: an MILP- based multi-objective model[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 332-341. [23] Wang Y, Wang C, Li W, et al.Reliability-based incremental PMU placement[J]. IEEE Transactions on Power Systems, 2014, 29(6): 2744-2752. [24] Dehghani M, Goel L, Li W.PMU based observability reliability evaluation in electric power systems[J]. Electric Power Systems Research, 2014, 116: 347-354. [25] Wang Y, Li W, Lu J.Reliability analysis of wide-area measurement system[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1483-1491.