Design of Tubular Permanent Magnet Synchronous Linear Motor by Reliability-Based Robust Design Optimization
Zhang Chunlei1,2, Zhang Hui1,2, Ye Peiqing1,2
1. Department of Mechanical Engineering Tsinghua University Beijing 100084 China; 2. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control Tsinghua University Beijing 100084 China
Abstract:With the advantages of low cost and high robustness, linear hall sensors are utilized to detect the mover position of the tubular permanent magnet synchronous linear motor (TPMSLM). However, the position detection accuracy of linear hall sensor is affected by magnetic field harmonics. To reduce the harmonics, the TPMSLM was designed by reliability-based robust design optimization (RBRDO) considering the manufacturing tolerance. Firstly, a model of the position identification and thrust force analysis was established. The relationship between design variables and design objectives was analyzed. Then, the response surface model of design objectives was established by the neural network. The probability constraints were obtained by Pareto optimal front under different thrust coefficients. Finally, the total harmonic distortion is greatly reduced by RBRDO, while the thrust coefficient and the peak flux density are slightly reduced. And the position detection accuracy is improved from 357μm to 109μm.
张春雷, 张辉, 叶佩青. 高霍尔位置检测精度的圆筒型永磁同步直线电机设计[J]. 电工技术学报, 2022, 37(10): 2481-2490.
Zhang Chunlei, Zhang Hui, Ye Peiqing. Design of Tubular Permanent Magnet Synchronous Linear Motor by Reliability-Based Robust Design Optimization. Transactions of China Electrotechnical Society, 2022, 37(10): 2481-2490.
[1] 许孝卓, 孙震, 汪旭东, 等. Halbach交替极永磁同步直线电机特性分析[J]. 电工技术学报, 2019, 34(9): 1825-1833. Xu Xiaozhuo, Sun Zhen, Wang Xudong, et al.Characteristic of a novel permanent magnet linear synchronous motor with Halbach array consequent- pole[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1825-1833. [2] Morimoto S, Kawamoto K, Sanada M, et al.Sensor- less control strategy for salient-pole PMSM based on extended EMF in rotating reference frame[J]. IEEE Transactions on Industry Applications, 2002, 38(4): 1054-1061. [3] 吴春, 陈科, 南余荣, 等. 考虑交叉饱和效应的变角度方波电压注入永磁同步电机无位置传感器控制[J]. 电工技术学报, 2020, 35(22): 4678-4687. Wu Chun, Chen Ke, Nan Yurong, et al.Variable angle square-wave voltage injection for sensorless control of PMSM considering cross-saturation effect[J]. Transactions of China Electrotechnical Society, 2020, 32(22): 4678-4687. [4] 张春雷, 张辉, 叶佩青, 等. 两相圆筒型永磁同步直线电机无传感算法[J]. 电工技术学报, 2019, 32(23): 4901-4908. Zhang Chunlei, Zhang Hui, Ye Peqing, et al.Research on sensorless algorithm of two-phase tubular permanent magnet synchronous linear motor[J]. Transactions of China Electrotechnical Society, 2019, 32(23): 4901-4908. [5] Paul S, Chang J.A new approach to detect mover position in linear motors using magnetic sensors[J]. Sensors, 2015, 15(10): 26694-26708. [6] Zhu Ziqiang, Shi Y, Howe D.Rotor position sensing in brushless AC motors with self-shielding magnets using linear hall sensors[J]. Journal of Applied Physics, 2006, 99(8): 308-313. [7] 刘刚, 肖烨然, 宋欣达. 永磁同步电机用线性霍尔位置检测的误差补偿[J]. 电机与控制学报, 2014, 18(8): 36-42. Liu Gang, Xiao Yeran, Song Xinda.Error com- pensation of rotor position detection for permanent magnetic synchronous motor based on linear hall sensors[J]. Electric Machines and Control, 2014, 18(8): 36-42. [8] 严乐阳, 叶佩青, 张勇, 等. 圆筒型永磁直线同步电机用线性霍尔位置检测的误差补偿[J]. 电工技术学报, 2017, 32(5): 26-32. Yan Leyang, Ye Peiqing, Zhang Yong, et al.Error compensation of linear hall based position detection for tubular permanent magnetic linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 26-32. [9] Du Shengwu, Hu Jinchun, Zhu Yu, et al.A hall sensor-based position measurement with on-line model parameters computation for permanent magnet synchronous linear motor[J]. IEEE Sensors Journal, 2018, 18(13): 5245-5255. [10] Reigosa D, Fernandez D, Gonzalez C, et al.Permanent magnet synchronous machine drive control using analog hall-effect sensors[J]. IEEE Transa- ctions on Industry Applications, 2018, 54(3): 2358-2369. [11] Jung S Y, Nam K.PMSM control based on edge-field hall sensor signals through ANF-PLL processing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(11): 5121-5129. [12] Song Xinda, Fang Jiancheng, Han Bangcheng.High- precision rotor position detection for high-speed surface PMSM drive based on linear hall-effect sensors[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4720-4731. [13] Yan Leyang, Ye Peiqing, Zhang Chunlei, et al.An improved position detection method for permanent magnet linear motor using linear hall sensors[C]// International Conference on Electrical Machines and Systems, Sydney, Australia, 2017: 1-4. [14] Liu Xiao, Ye Yunyue, Zheng Zhuo, et al.Study of the linear hall-effect sensors mounting position for PMLSM[C]//IEEE Conference on Industrial Elec- tronics and Applications, Harbin, China, 2007: 1175-1178. [15] Pan Songhan, Commins P A, Du Haiping.Tubular linear motor position detection by hall-effect sensors[C]//Australasian Universities Power Engineering Conference, Wollongong, 2015: 1-6. [16] 赵镜红, 张晓锋, 张俊洪, 等. 圆筒永磁直线同步电机磁场和推力分析[J]. 电机与控制学报, 2010, 14(1): 12-17. Zhao Jinghong, Zhang Xiaofeng, Zhang Junhong.Field and thrust analysis of tubular permanent magnet linear synchronous motor[J]. Electric Machines and Control, 2010, 14(1): 12-17. [17] 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J]. 电工技术学报, 2018, 33(增刊2): 385-393. Liu Guohai, Wang Yanyang, Chen Qian.Multi- objective optimization of an asymmetric V-shaped interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393. [18] 杨阳, 赵吉文, 宋俊材, 等. 基于深度神经网络模型的无铁心永磁同步直线电机结构优化研究[J]. 中国电机工程学报, 2019, 39(20): 6085-94. Yang Yang, Zhao Jiwen, Song Juncai, et al.Structural optimization of air-core permanent magnet syn- chronous linear motors based on deep neural network models[J]. Proceedings of the CSEE, 2019, 39(20): 6085-6094. [19] Lee I, Choi K, Du Liu, et al.Dimension reduction method for reliability-based robust design optimi- zation[J]. Computers & Structures, 2008, 86(13-14): 1550-1562. [20] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.