电工技术学报  2022, Vol. 37 Issue (19): 4823-4834    DOI: 10.19595/j.cnki.1000-6753.tces.221263
电力系统与综合能源 |
含风电继电保护应用中的电流互感器饱和电流重构方法
黄梓欣, 林湘宁, 马啸, 吴宇奇, 魏繁荣
强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院) 武汉 430074
Reconstruction Method of Saturation Current of Current Transformer in Relay Protection Application Related to Wind Power
Huang Zixin, Lin Xiangning, Ma Xiao, Wu Yuqi, Wei Fanrong
State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
全文: PDF (1516 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 传统继电保护研究往往将抗电流互感器(CT)饱和视作离线判据整定的必要条件,实际上,利用在线快速重构所得电流数据参与保护计算是一种新思路。但在风电接入系统后,流经CT的是风电与同步机的混合故障电流,然而现有的电流重构数值计算方法难以对风电间谐波进行解析建模,数据驱动方法则在计算速度和抗噪能力上有所欠缺。对此,该文提出一种含风电继电保护应用中的电流互感器饱和电流重构方法,主要分为两个阶段:离线阶段,首先结合影响CT饱和的多重因素生成样本数据集,然后训练堆叠式长短期记忆神经网络(Stacked LSTM),继而构建CT二次电流到一次电流的映射模型,再结合贝叶斯优化求取模型最优超参数;在线阶段,首先对故障后CT半周二次电流进行白噪声降噪,再将其输入离线模型重构整周一次电流,最后利用重构电流数据参与保护计算。仿真结果表明,该方法在各种CT工况下具有较强的适应性,对含间谐波和噪声的电流重构精度较高,能为继电保护提供真实有效的数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄梓欣
林湘宁
马啸
吴宇奇
魏繁荣
关键词 电流互感器饱和电流重构长短期记忆神经网络贝叶斯优化    
Abstract:Conventional researches on relay protection regards anti-saturation for current transformer (CT) as a necessary condition for off-line criterion setting. Actually, a new idea is to use the on-line reconstructed current to participate in the protection calculation. However, after the wind power is connected to the system, mixed fault current of wind power and synchronous generators flows through CT. Among existing saturation current reconstruction studies, numerical calculation methods are difficult to model the interharmonics of wind turbines, and data-driven methods are lacking in calculating speed and noise immunity. In this paper, a CT saturation current reconstruction method in relay protection application was proposed, which can be mainly divided into two stages. In the offline stage, firstly, multiple factors affecting CT saturation were considered when generating the dataset. Next, the stacked long short-term memory network (Stacked LSTM) was trained to build the mapping model of CT primary current to secondary current. Then, the optimal hyper parameter was obtained through Bayesian optimization. In the online stage, noise reduction was carried out for the secondary current in the half cycle after fault, then the secondary current after noise reduction was input into the off-line model to reconstruct the primary current, which can be used in protection calculation. The simulation results show that the proposed method has good robustness and high reconstruction accuracy for current with interharmonics and noise, and can provide effective data for relay protection.
Key wordsCurrent transformer    saturation current reconstruction    long short-term memory network    Bayesian optimization   
收稿日期: 2022-06-30     
PACS: TM452  
基金资助:国家自然科学基金资助项目(51877088)
通讯作者: 林湘宁 男,1970年生,教授,博士生导师,研究方向为电力系统继电保护和新能源发电等。E-mail:xiangning.lin@hust.edu.cn   
作者简介: 黄梓欣 男,1999年生,硕士研究生,研究方向为机器学习及其在电力系统保护与控制中的应用。E-mail:2643821765@qq.com
引用本文:   
黄梓欣, 林湘宁, 马啸, 吴宇奇, 魏繁荣. 含风电继电保护应用中的电流互感器饱和电流重构方法[J]. 电工技术学报, 2022, 37(19): 4823-4834. Huang Zixin, Lin Xiangning, Ma Xiao, Wu Yuqi, Wei Fanrong. Reconstruction Method of Saturation Current of Current Transformer in Relay Protection Application Related to Wind Power. Transactions of China Electrotechnical Society, 2022, 37(19): 4823-4834.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.221263          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I19/4823