Electric Field Analysis and Optimal Design of Main Insulation for <br/>Oil-Immersed Inverted Current Transformers
Yan Xiuke1, Sun Yang2, Yu Cunzhan3, Xie Dexin1
1. Shenyang University of Technology Shenyang 110870 China; 2. TEBA Shenyang Transformer Group Co. Ltd Shenyang 110144 China; 3. Liaoning Electric Power Co. Ltd Shenyang 110003 China
Abstract:Inverted current transformer is very different from traditional production on design and manufacture. Insulation fault often occurred in the early application. The electric field calculating model which combined FEM with analytical method is proposed in this paper. The electric field distribution in main insulation of actual oil-immersed inverted current transformer is been analyzed using this model, and the main factors which affected the insulation performance are researched. To reduce the maximum electric field strength, the main insulation structure of current transformer is optimized using radial basic function (RBF) neural network dynamic response model and genetic algorithm. After optimization, the electric field strength in main insulation is reduced, and the electric field distribution is become more homogeneous. The optimized result can instruct the design and manufacture of oil-immersed inverted current transformers.
阎秀恪, 孙阳, 于存湛, 谢德馨. 油浸倒立式电流互感器主绝缘电场分析与优化设计[J]. 电工技术学报, 2014, 29(1): 37-43.
Yan Xiuke, Sun Yang, Yu Cunzhan, Xie Dexin. Electric Field Analysis and Optimal Design of Main Insulation for <br/>Oil-Immersed Inverted Current Transformers. Transactions of China Electrotechnical Society, 2014, 29(1): 37-43.
[1] 王世阁.倒置式电流互感器运行状况分析及提高安全运行性能的建议[J]. 变压器, 2009, 46(9): 64-68. Wang Shige. Operation analysis of inverted current transformer and suggestion to improve operational safety[J]. Transformer, 2009, 46(9): 64-68. [2] Satish M Mahajan, Diego M Robalino. Thermal modeling of an inverted-type oil-immersed current transformer [J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2511-2518. [3] 王仲弈, 马志瀛, 顾沈卉, 等. 550kV SF6绝缘电流互感器的电场计算分析[J]. 华北电力大学学报, 2005, 23(sup): 71-74. Wang Zhongyi, Ma Zhiying, Gu Shenhui, et al. Electric field calculation and analysis of 550kV SF6 current transformer[J]. Journal of North China Electric Power University, 2005, 23(sup): 71-74. [4] 王世山, 李彦明, 佟威, 等. SF6电流互感器电场计算及其结构优化[J]. 电瓷避雷器, 2003(4): 22-24. Wang Shishan, Li Yanming, Tong Wei, et al. Electric stress calculation and design optimization of SF6 current transformer[J]. Nsulators and Surge Arresters, 2003(4): 22-24. [5] 罗青林, 刘玉凤, 330kV SF6电流互感器电场计算及绝缘结构分析[J]. 变压器, 2001, 38(4): 16-19. Luo Qinglin, Liu Yufeng. Calculation of electric field in a 330kV SF6 current transformer and its insulation structure analysis[J]. Transformer, 2001, 38(4):16-19. [6] 邹彬, 郭森, 袁聪波, 等. 一起220kV油浸倒立式电流互感器故障原因分析[J]. 变压器, 2010, 47(2): 69-71. Zou Bin, Guo Sen, Yuan Congbo, et al. Fault analysis of 220kV oil-immersed inverter-type current transformer[J]. Transformer, 2010, 47(2): 69-71. [7] 陈瑞国, 韩洪刚, 孙艳鹤. 220kV油浸倒立式电流互感器故障原因分析[J]. 变压器, 2010, 47(5): 68-71. Chen Ruiguo, Han Honggang, Sun Yanhe. Problem analysis of 220kV oil-immersed inverter-type current transformer[J]. Transformer, 2010, 47(5): 68-71. [8] 尚耀辉, 赵建洲, 刘亚亚, 等.绝缘油纸电流互感器的绝缘设计[J].电力电容器与无功补偿, 2009, 30(3): 25-27. Shang Yaohui, Zhao Jianzhou, Liu Yaya, et al. The insulation design of oil-paper insulation current transformer[J]. Power Capacitor & Reactive Power Compensation, 2009, 30(3): 25-27. [9] 魏朝晖. 油浸倒立式电流互感器设计[J]. 变压器, 2000, 37(9): 6-9. Wei Zhaohui. Design of oil immersed inverted current transformer[J]. Transformer, 2000, 37(9): 6-9. [10] 互感器制造技术编审委员会.互感器制造技术[M]. 北京: 机械工业出版社, 1998. [11] 肖耀荣, 高祖绵. 互感器原理与设计基础[M]. 沈阳: 辽宁科学技术出版社, 2003. [12] 杨茜, 郭天兴, 刘海, 等. 110kV电流互感器电场分析与绝缘结构改进[J]. 电力电容器与无功补偿, 2010, 31(1): 31-34. Yang Qian, Guo Tianxing, Liu Hai, et al. Electric field analysis and insulation structure improvement for 110kV current transformer[J]. Power Capacitor & Reactive Power Compensation, 2010, 31(1): 31-34. [13] 马爱清, 郑勇, 江秀臣, 等. MPCG算法在GIS三相共罐式SF6高压断路器电场计算中的应用[J]. 中国电机工程学报, 2007, 27(24): 5-10. Ma Aiqing, Zheng Yong, Jiang Xiuchen, et al. Application of MPCG aligorithm to three dimensional electric field calculation of SF6 circuit breaker in three-phase-in-one-tank GIS[J]. Proceedings of the CSEE, 2007, 27(24): 5-10. [14] 曹云东, 刘晓明, 刘冬, 等. 动态神经网络法及在多变量电器优化设计中的研究[J]. 中国电机工程学报, 2006, 26(8): 112-116. Cao Yundong, Liu Xiaoming, Liu Dong, et al. Investigation of a dynamic nerual network approach and its application of multivariable optimization to electric apparatus[J]. Proceedings of the CSEE, 2006, 26(8): 112-116. [15] 李岩, 王东风, 焦嵩鸣, 等.采用微分进化算法和径向基函数神经网络的热工过程模型辨识[J]. 中国电机工程学报, 2010, 30(8): 110-116. Li Yan, Wang Dongfeng, Jiao Songming, et al. Thermal process identification using differential evolution algorith and radial basis function neural network[J]. Proceedings of the CSEE, 2010, 30(8): 110-116. [16] Chang G W, Chen Cheng I, Teng Yu Feng. Radial- basis-function-based neural network for harmonic detection[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 2171-2179. [17] S Gholizadeh, E Salajegheh, P Torkzadeh. Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network[J]. Journal of Sound and Vibration, 2008, 312(1-2): 316-331. [18] JBarry Gomm, Ding Li Yu. Selecting radial basis function network centers with recursive orthogonal least squares training[J]. IEEE Transactions on Neural Networks, 2000, 11(2):306-314. [19] 桂劲松, 康海贵. 结构可靠度分析的改进BP神经网络响应面法[J]. 应用力学学报, 2005, 22(1): 127-130. Gui Jinsong, Kang Haigui. Improved BP ANN response surface method for structural relibility analysis[J]. Chinese Journal of Applied Mechanics, 2005, 22(1): 127-130. 作者简介:阎秀恪 女,1973年生,博士,副教授,研究方向为电气装备耦合物理场分析与优化设计。孙阳 男,1986年生,硕士,研究方向为电气设备电磁场分析与优化设计。